O circleci

OPERATIONS GUIDE

A guide for administrators of CircleCI Server
installations on AWS and private infrastructure.

docs@circleci.com

Version 2.18.3, 02/06/2020: FINAL

Overview

Build Environments

Architecture

Introduction to Nomad Cluster Operation
Basic Terminology and Architecture

Basic Operations

Monitoring Your Installation

System Monitoring

Supported Platforms

Custom Metrics

Configuring Nomad Client Metrics

Nomad Metrics Server
Nomad Metrics Client
StatsD Metrics

Setting Up HTTP Proxies

Overview
Service Machine Proxy Configuration
Data Persistence

Authentication

OAuth with GitHub/GHE
LDAP

VM Service

Overview

Configuration

Customizing and Creating VM Service Images
Defining Instance Types

On Demand and Preallocated Instances

Job and Instance Management

Accessing Remote Docker andmachine instances

Running GPU Executors
Prerequisites

Overview

Adding GPU Steps to an AMI

Setting Up Certificates

Using a Custom Root CA

Setting up ELB Certificates

Setting up TLS/HTTPS on CircleCl Server
Managing User Accounts

Suspending Accounts

Reactivating a Suspended User Account
Controlling Account Access

o © » 1 1 v N P

AR DN DN W WWwWwWwWwwwwwwwwwWhhphhm M v RNERRRBRERR
O~ W W EFR © O© © oW 6 oo ~ABNMNNNNNODNMNMNDNOOOOO O W R

Build Artifacts
Safe and Unsafe Content Types
Allow Unsafe Content types
Enabling Usage Statistics
Detailed Usage Statistics
Accessing Usage Data
Configuring the JVM Heap Size
Setting up
Verify customization is applied
Maintenance
System Checks
Security and Access Control
System Configuration
Metrics
Usage Statistics
Health Checks
Operational Tasks
Troubleshooting
Queues
Daylight-saving time changes
Data cleardown
Log rotation
Replicated Failover and Recovery procedures
User Management
Backup and Recovery
Disaster Recovery
Backing up CircleCl Data
Backing up the Database
Backing up Object Storage
Snapshotting on AWS EBS
Restoring From Backup
Cleaning up Build Records
Security
Overview
Encryption
Sandboxing
Integrations
Audit Logs
Troubleshooting Server Installations
Frequently Asked Questions
Customization and Configuration
Notable Files & Folders

48
48
49
50
50
52
53
53
53
55
55
58
58
58
59
59
60
60
63
64
64
64
64
64
65
65
65
65
65
66
66
66
67
67
67
67
67
68

{4
81
81

Service Configuration Overrides
CircleClI Server Container Architecture
Containers, Roles, Failure Modes and Startup Dependencies

82
84
85

Overview

CircleClI Server v2.18.3 uses the CircleCl 2.0 architecture.

version: 2.0

should be used in all.circleci/config.yml
Currently not supported for Server: orbs, reusable commands pipelines.

files.

CircleCl Server is a modern continuous integration and continuous delivery (CI/CD) platform installable
inside your private cloud or data center. Refer to the Changelogfor whatOs new in this CircleCl Server

release.

Repository

Graphic User Interface
Command Line Interface

CircleCl API _®_’

B

Notification

] @

Audit Logs SSH Insights

Data, Debugging

9

Orchestration

o S

Workflows Caching Contexts

@

Artifacts

?

Execution

és A gpy

Deployment

Figure 1. CircleClI Services Architecture

https://circleci.com/docs/2.0/orb-intro/#section=configuration
https://circleci.com/docs/2.0/reusing-config/#authoring-reusable-commands
https://circleci.com/docs/2.0/build-processing/
https://circleci.com/server/changelog

Build Environments

CircleClI 2.0 uses Nomad as the primary job scheduler. Refer to outntroduction to Nomad Cluster
Operation to learn more about the job scheduler and how to perform basic client and cluster operations.

By default, CircleCl 2.0 Nomad clients automatically provision containers according to the image configured
for each job in your .circleci/config.yml file.

Architecture

Figure 1.1 illustrates CircleCl core components, build orchestration services, and executors. The CircleGAPI
is a full-featured RESTful API that allows you to access all information and trigger all actions in CircleCI.

Within the CircleCl Ul is the Insights page, which acts as a dashboard showing the health of all repositories
you are following including:

¥ median build time

¥ median queue time

¥ last build time

¥ success rate

¥ parallelism
CircleCl consists of two primary components: Services and Nomad Clients. Any number of Nomad Clients

execute your jobs and communicate back to the Services. All components must access GitHub or your
hosted instance of GitHub Enterprise on the network, as illustrated below.

Nomad Client Code VCS
Cluster

GitHub /
GitHub Enterprise

Services Machine

The Services machine must must not be restarted and may be backed up using VM snapshotting. If you
must restart the Services machine, do so only as a last resort, because a restart will result in downtime.
Refer to the Backup and Recoverychapter for instructions.

https://circleci.com/docs/api/#section=reference

DNS resolution may point to the IP address of the Services machine. It is also possible to point to a load
balancer, for example an ELB in AWS. The following table describes the ports used for traffic on the Service

machine:

Source Ports Use

End Users 80, 443, 4434 HTTP/HTTPS Traffic
Administrators 22 SSH

Administrators 8800 Admin Console

Builder Boxes all traffic, all ports Internal Communication
GitHub (Enterprise or .com) 80, 443 Incoming Webhooks

Nomad Clients

Nomad Clients run without storing state, enabling you to increase or decrease the number of containers as
needed.

To ensure enough Nomad clients are running to handle all builds, track the queued builds and increase the
number of Nomad Client machines as needed to balance the load. For more on tracking metrics see
Monitoring Your Installation .

Each machine reserves two vCPUs and 4GB of memory for coordinating builds. The remaining processors
and memory create the containers. Larger machines are able to run more containers and are limited by the
number of available cores after two are reserved for coordination.

I The maximum machine size for a Nomad client is 128GB RAM/ 64 CPUs, contact your
. CircleCl account representative to request use of larger machines for Nomad Clients.

The following table describes the ports used on Nomad clients:

Source Ports Use

End Users 64535-65535 SSH into builds
Administrators 80 or 443 CCI API Access
Administrators 22 SSH

Services Machine all traffic, all ports Internal Comms
Nomad Clients (including itself) all traffic, all ports Internal Comms
GitHub

CircleCl uses GitHub or GitHub Enterprise credentials for authentication which, in turn, may use LDAP,
SAML, or SSH for access. This means CircleCl will inherit the authentication supported by your central SSO
infrastructure.

Source
Services
Services
Nomad Client

Nomad Client

CircleCl does not support changing the URL or backend GitHub instance after it has been
set up. The following table describes the ports used on machines running GitHub to
communicate with the Services and Nomad Client instances.

Ports
22

80, 443
22

80, 443

Use

Git Access

API Access
Git Access

API Access

Introduction to Nomad Cluster Operation

This document is intended for system administrators of self-hosted installations of CircleCl Server.

CircleCl 2.0 usesNomad as the primary job scheduler. This chapter provides a basic introduction to Nomad

for understanding how to operate the Nomad Cluster in your CircleCl 2.0 installation.

Basic Terminology and Architecture

.

1
I
i
:
1
— Build Agent
I
i
i
1
1
1
1
I
i
i
i
1
1
1
1
I
i
i
1

AWS EC2 Instance
Services Machine

X AWS Auto Scaling Group

Nomad Cluster

{:} AWS EC2 Instance

Nomad Client

Nomad Job

+ config specifies
docker executor

job steps run in
container with

specified image

Multiple Nomad Jobs are run on
each Nomad Client, until
capacity is reached, at which
point a new Client instance can
be spun up, either manually, or
using scheduled scaling,
increasing the size of the cluster.

Nomad Server uses its
scheduling algorithm

__________________I_______

. to allocate jobs to
<" Nomad Clients.

i:} AWSECZInstance |
Nomad Client
Nomad Job
« config specifies

docker executor
with remote docker

C

T
T

@ job stepsrunin
container with
specified image

AWS EC2 Instance
VM Service

Remote Docker

Docker commands
run in remote
environment for
security

AWS EC2 Instance
Nomad Client

Nomad Job
Build Agent

1

1

1

1

1

1

« config specifies H
machine executor H
1

1

1

1

1

--_,__---___I--_‘__

AWS EC2 Instance
VM Service

Machine Executor

Job steps run remotely
with full access to
machine resources

Figure 2. Nomad Cluster Management

AWS EC2 Instance
Nomad Client

-

When jobs specify remote Docker
or Machine Executor, either a
preallocated instance will be
available, or the build agent will
call back to the VM Service APl on
the Services machine to request a
new instance be spun up.

https://www.hashicorp.com/blog/nomad-announcement/

¥ Nomad Server: Nomad servers are the brains of the cluster; they receive and allocate jobs to Nomad
clients. In CircleCl, a Nomad server runs on your Services machine as a Docker Container.

¥ Nomad Client: Nomad clients execute the jobs they are allocated by Nomad servers. Usually a Nomad
client runs on a dedicated machine (often a VM) in order to fully take the advantage of machine power.
You can have multiple Nomad clients to form a cluster and the Nomad server allocates jobs to the
cluster with its scheduling algorithm.

¥ Nomad Jobs: A Nomad job is a specification, provided by a user, that declares a workload for Nomad. In
CircleCl 2.0, a Nomad job corresponds to an execution of a CircleCl job. If the job uses parallelism, say
10 parallelism, then Nomad will run 10 jobs.

¥ Build Agent: Build Agent is a Go program written by CircleCl that executes steps in a job and reports the
results. Build Agent is executed as the main process inside a Nomad Job.

Basic Operations
The following section is a basic guide to operating a Nomad cluster in your installation.

The nomad CLI is installed in the Service instance. It is pre-configured to talk to the Nomad cluster, so it is
possible to use the nomad command to run the following commands in this section.

Checking the Jobs Status

The get a list of statuses for all jobs in your cluster, run:
nomad status

The status is the most important field in the output, with the following status type definitions:

¥ running : Nomad has started executing the job. This typically means your job in CircleCl is started.
¥ pending : There are not enough resources available to execute the job inside the cluster.

¥ dead: Nomad has finished executing the job. The status becomesiead regardless of whether the
corresponding CircleCl job/build succeeds or fails.

Checking the Cluster Status

To get a list of your Nomad clients, run:

nomad node-status

nomad node-status reports both Nomad clients that are currently serving (status active)
| and Nomad clients that were taken out of the cluster (status down). Therefore, you need to
count the number of active Nomad clients to know the current capacity of your cluster.

To get more information about a specific client, run the following from that client:

nomad node-status -self

This will give information such as how many jobs are running on the client and the resource utilization of the
client.

Checking Logs

As noted in the Nomad Jobs section above, a Nomad Job corresponds to an execution of a CircleCl job.
Therefore, Nomad Job logs can sometimes help to understand the status of a CircleCl job if there is a
problem. To get logs for a specific job, run:

nomad logs -job -stderr <nomad-job-id>

! Be sure to specify the -stderr flag as this is where most Build Agent logs appear.

While the nomad logs -job command is useful, the command is not always accurate because thgob flag
uses a random allocation of the specified job. The termaliocation is a smaller unit in Nomad Job, which is
out of scope for this document. To learn more, please seethe official document.

Complete the following steps to get logs from the allocation of the specified job:

1. Get the job ID with nomad status ~command.
2. Get the allocation ID of the job with nomad status <job-id> command.

3. Get the logs from the allocation with nomad logs -stderr <allocation-id>

Scaling the Cluster

By default, your Nomad Client is set up within an Auto Scaling Group (ASG) within AWS. To view settings: .
Go to your EC2 Dashboard and select Auto Scaling Groups from the left hand menu . Select your Nomad
Client . Select Actions > Edit to set Desired/Minimum/Maximum counts. This defines the number of Nomad
Clients to spin up and keep available. Use the Scaling Policy tab to scale up your group automatically at your
busiest times, see below for best practices for defining scaling policies. Usenomad job metrics to assist in
defining your scaling policies.

Auto Scaling Policy Best Practices

There is ablog post serieswherein CircleCl engineering spent time running simulations of cost savings for
the purpose of developing a general set of best practices for Auto Scaling. Consider the following best
practices when setting up AWS Auto Scaling:

1. In general, size your cluster large enough to avoid queueing builds. That is, less than one second of
gueuing for most workloads and less than 10 seconds for workloads run on expensive hardware or at
highest parallellism. Sizing to reduce queuing to zero is best practice because of the high cost of
developer time. It is difficult to create a model in which developer time is cheap enough for under-
provisioning to be cost-effective.

2. Create an Auto Scaling Group with a Step Scaling policy that scales up during the normal working hours

https://www.nomadproject.io/docs/internals/scheduling.html
https://circleci.com/blog/mathematical-justification-for-not-letting-builds-queue/

of the majority of developers and scales back down at night. Scaling up during the weekday normal
working hours and back down at night is the best practice to keep queue times down during peak
development, without over provisioning at night when traffic is low. Looking at millions of builds over
time, a bell curve during normal working hour emerges for most data sets.

This is in contrast to auto scaling throughout the day based on traffic fluctuations, because modelling
revealed that boot times are actually too long to prevent queuing in real time. Use AmazonOs Step Policy
instructions to set this up along with Cloudwatch Alarms.

Shutting Down a Nomad Client

When you want to shutdown a Nomad client, you must first set the client to drain mode. Indrain mode, the
client will finish any jobs that have already been allocated but will not be allocated any new jobs.

1. To drain a client, log in to the client and set the client to drain mode with node-drain command as
follows:
nomad node-drain -self -enable

2. Then, make sure the client is in drain mode using thenode-status ~ command:

nomad node-status -self

Alternatively, you can drain a remote node with the following command, substituting the node ID:

nomad node-drain -enable -yes <node-id>

Scaling Down the Client Cluster

To set up a mechanism for clients to shutdown, first enter drain mode, then wait for all jobs to be finished
before terminating the client. You can also configure anASG Lifecycle Hookthat triggers a script for scaling
down instances.

The script should use the commands in the section above to do the following:

1. Put the instance in drain mode
2. Monitor running jobs on the instance and wait for them to finish

3. Terminate the instance

http://docs.aws.amazon.com/autoscaling/latest/userguide/as-scaling-simple-step.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/lifecycle-hooks.html

Monitoring Your Installation

This document is intended for system administrators of self-hosted installations of CircleCl Server.

This section includes information on metrics for monitoring your CircleCI Server installation.

System Monitoring

To enable metrics forwarding to either AWS Cloudwatch or Datadog, navigate to your CircleCl
Management Console, select Settings from the menu bar and scroll down to enable the provider of your
choice (your-circleci-hostname.com:8800/settings#cloudwatch_metrics).

VM Service and Docker Metrics

VM Service and Docker services metrics are forwarded viaTelegraf, a plugin-driven server agent for
collecting and reporting metrics.

Following are the enabled metrics:

¥ CPU

¥ Disk

¥ Memory

¥ Networking
¥ Docker

Nomad Job Metrics
Nomad job metrics are enabled and emitted by the Nomad Server agent. Five types of metrics are reported:

Metric Description

circle.nomad.server_agent.poll_failure Returns 1 if the last poll of the Nomad agent
failed, otherwise it returns 0.

circle.nomad.server_agent.jobs.pending Returns the total number of pending jobs across
the cluster.

circle.nomad.server_agent.jobs.running Returns the total number of running jobs across
the cluster.

circle.nomad.server_agent.jobs.complete Returns the total number of complete jobs

across the cluster.
circle.nomad.server_agent.jobs.dead Returns the total number of dead jobs across

the cluster.

When the Nomad metrics container is running normally, no output will be written to standard output or
standard error. Failures will elicit a message to standard error.

https://github.com/influxdata/telegraf
https://github.com/influxdata/telegraf/blob/master/plugins/inputs/cpu/README.md#cpu-time-measurements
https://github.com/influxdata/telegraf/blob/master/plugins/inputs/disk/README.md#metrics
https://github.com/influxdata/telegraf/blob/master/plugins/inputs/mem/README.md#metrics
https://github.com/influxdata/telegraf/blob/master/plugins/inputs/net/NET_README.md#measurements—​fields
https://github.com/influxdata/telegraf/tree/master/plugins/inputs/docker#metrics
https://www.nomadproject.io/docs/telemetry/metrics.html#job-metrics

CircleCI Metrics

Introduced in CircleClI Server v2.18

circle.backend.action.upload-artifact-error

circle.build-queue.runnable.builds

circle.dispatcher.find-containers-failed
circle.github.api_call
circle.http.request
circle.nomad.client_agent.*’
circle.nomad.server_agent.*

circle.run-queue.latency

circle.state.container-builder-ratio

circle.state.Ixc-available

circle.state.Ixc-reserved

circleci.cron-service.messaging.handle-
message

circleci.grpc-response

Tracks how many times an artifact has failed to upload.

Tracks how many builds flowing through the system are
considered runnable.

Tracks how many 1.0 builds

Tracks how many api calls CircleCl is making to github
Tracks the response codes to CircleCi requests
Tracks nomad client metrics

Tracks how many nomad servers there are.

Tracks how long it takes for a runnable build to be
accepted.

Keeps track of how many containers exist per builder (
1.0 only).

Tracks how many containers are available (1.0 only)

Tracks how many containers are reserved/in use (1.0
only).

Provides timing and counts for RabbitMQ messages
processed by the cron-service

Tracks latency over the system grpc system calls.

Supported Platforms

We have two built-in platforms for metrics and monitoring: AWS CloudWatch and DataDog. The sections
below detail enabling and configuring each in turn.

AWS CloudWatch
To enable AWS CloudWatch complete the following:

1. Navigate to the settings page within your Management Console. You can use the following URL,
substituting your CircleCl URL: your-circleci-hostname.com:8800/settings#cloudwatch_metrics.

2. Check Enabled under AWS CloudWatch Metrics to begin configuration.

AWS Cloudwatch Metrics

Figure 3. Enable Cloudwatch

AWS CloudWatch Configuration
There are two options for configuration:

¥ Use the IAM Instance Profile of the services box and configure your custom region and namespace.

AWS Cloudwatch Metrics

® Enabled

® 1AM Instance Profile

AWS CloudWatch Region

us-west-2

AWS CloudWatch Namespace

ci_metric5|

Figure 4. CloudWatch Region and Namespace

¥ Alternatively, you may use your AWS Access Key and Secret Key along with your custom region and
namespace.

AWS Cloudwatch Metrics

 Enabled

AWS CloudWatch Region

us-west-2

AWS CloudWatch Namespace

ci_metrics

Figure 5. Access Key and Secret Key

After saving you can verify that metrics are forwarding by going to your AWS CloudWatch console.

DataDog
To enable Datadog complete the following:

1. Navigate your Management Console Settings. You can use the following URL, substituting your CircleCl
hostname: your-circleci-hostname.com:8800/settings#datadog_metrics

2. Check Enabled under Datadog Metrics to begin configuration.

Datadog Metrics

O Enabled

Figure 6. Enable Datadog Metrics

3. Enter your DataDog API Key. You can verify that metrics are forwarding by going to your DataDog
metrics summary.

Datadog Metrics

[Enabled

Datadog API key (Re :
<YOUR_API_KEY>

Figure 7. Enter Datadog API key

Custom Metrics

Custom Metrics using a Telegraf configuration file may be use as an alternative to DataDog or AWS
Cloudwatch. Using Telegraf allows for more fine grained control.

Customizing Metrics
Following are the steps required to customize which of these metrics you wish to receive:

1. Check to enable Use Custom Telegraf Metrics from the Management Console settings

Custom Metrics

Enable forwarding to custom Telegraf output providers

™ Use custom telegraf metrics
The default telegraf configurations are disabled when using custom telegraf metrics.

Files matching " /etc/circleconfig/telegraf/*.conf™ on this host will be included with the telegraf configuration. This
allows you to specify custom output providers. For more information visit
https://circleci.com/docs/2.0/monitoring/.

Example

SSH into the services host, then add the following to /etc/circleconfig/telegraf/statsd.conf
Afterwards restart the telegraf container with “sudo docker restart telegraf®
[[inputs.statsd]]

service_address = ":8125"

parse_data_dog tags = true

metric_separator ="."

Figure 8. Custom Metrics

2. SSH into the Services machine

3. Add the following to /etc/circleconfig/telegraf/statsd.conf

[[inputs.statsd]]

E service_address = ":8125"
E parse_data_dog_tags = true
E metric_separator = "."

E namepass =[]

4. Under namepass add any metrics you wish to receive, the example below shows choosing to configure
just the first 4 from the list above:

[[inputs.statsd]]

E service_address = ":8125"

E parse_data_dog_tags = true

E metric_separator ="."

E namepass =|

E "circle.backend.action.upload-artifact-error”,
E "circle.build-queue.runnable.builds",

E "circle.dispatcher.find-containers-failed",

E "circle.github.api_call"

>

5. Restart the telegraf container by running: sudo docker restart telegraf

6. Navigate to your Management Console settings page, scroll down to save and restart your installation.

Configuring Custom Metrics

Configuration options are based on TelegrafOs documented output plugins. See their documentatiohere.
For example, if you would like to use the InfluxDB Output Plugin you would need to follow these steps:

1. SSH into the Servics Machine
2. cd /etc/circleconfig/telegraf/influxdb.conf

3. Adding the desired outputs, for example:

[[output.influxdb 11
E url = "http://52.67.66.155:8086"

E database = "testdb"

4. Run docker restart telegraf to restart the container to load or reload any changes.
You may check the logs by runningdocker logs -f telegraf to confirm your output provider (e.g. influx) is

listed in the configured outputs. Additionally, if you would like to ensure that all metrics in an installation are
tagged against an environment you could place the following code in your config:

[global_tags]
Env="<staging-circleci>"

Please see the InfluxDBdocumentation for default and advanced installation steps.

] Any changes to the config will require a restart of the CircleClI application which will
require downtime.

https://github.com/influxdata/telegraf/tree/release-1.10#output-plugins
https://github.com/influxdata/influxdb#installation

Configuring Nomad Client Metrics

This document is intended for system administrators of self-hosted installations of CircleCl Server.

Nomad Metrics is a helper service used to collect metrics data from theNomad server and clientsrunning
on the Services and Nomad instances respectively. Metrics are collected and sent using th&ogStatsD
protocol and sent to the Services machine.

Nomad Metrics Server

The Nomad Metrics container is run on the services host using the server flag and is installed as part of the
CircleCl Server installation process, requiring no additional configuration.

Nomad Metrics Client

The Nomad Metrics client is installed and run on all Nomad client instances. You will need to update your
AWS Launch Configuration in order to install and configure it. Additionally, you will need to modify the
AWS security group to ensure that UDP port 8125 is open on the Services machine. Steps for both
configuration changes are explained below.

| Before proceeding, you should be logged into the EC2 Service section of the AWS
. Console. Make sure that you logged into the region you use to run CircleCI Server.

Updating the Services machine Security Group

1. Select the Instances link located under the Instances group in the left sidebar.
2. Select the Services Box Instance. The name tag typically resemblesrcleci_services

3. In the description box at the bottom, select the users security group link located next to the Security
Groups section. It typically resembles*_users_sg

4. This will take you straight to the Security Group page highlighting the users security group. In the
description box at the bottom, select the inbound tab followed by the Edit button.

5. Select the Add aRule button. From the drop-down, select custom UDP Rule . In the Port Range field enter
8125.

6. The source field gives you a few options. However, this ultimately depends on how you have configured
the VPC and subnet. Below are some more common scenarios.

a. (Suggested) Allow traffic from the nomad client subnet. You can usually match the entries used for
ports 4647 or 3001. For example, 10.0.0.0/24

b. Allow all traffic to UDP port 8125 using 0.0.0.0/0

7. Press the Save Button

Updating the AWS Launch Configuration

Prerequisites

https://docs.datadoghq.com/developers/dogstatsd/

AWS EC2 Launch Configuration 1D

1
2
3

. Select the Auto Scaling Groups (ASG) link in the the sidebar on the left.
. Locate the ASG with a name tag similar to™*_nomad_clients_asg’

. The Launch Configuration name is next to the ASG name |Eerraform-20180814231555427200000001

AWS EC2 Services Box Private IP Address

1
2
3

. Select the instances link located under the Instances group in the left sidebar
. Select the Services Box Instance. The name tag typically resemblesrcleci_services

. In the description box at the bottom of the page, make note of the private IP address.

Updating the Launch Configuration

1

N o o~ w N

Select the Launch Configurations link located under Auto Scaling in the sidebar to the left. Select the
Launch Configuration you retrieved in the previous steps.
In the description pane at the bottom, select the Copy launch configuration button.
Once the configuration page opens, selects. Configure details link located at the top of the page.
Update the Namefield to something meaningful IE nomad-builder-with-metrics-lc-DATE
Select the Advanced Details ~ drop down.
Copy and paste the launch configuration script from below in the text field next to User data
IMPORTANT: Enter the private IP address of the services box at Line 10. For examplegxport
SERVICES_PRIVATE_IP="192.168.1.2"
Select the Skip to review button and then the Create launch configuration button.

#! [bin/sh

set -exu

export http_proxy =
export https_proxy ="

export no_proxy ="

export CONTAINER_NAMEnomad_metrics"

export CONTAINER_IMAGE"circleci/nomad-metrics:0.1.90-1448fa7"
export SERVICES_PRIVATE_IP=""

export NOMAD_METRICS _POR™B125"

echo "
echo " Performing System Updates"
echo "

apt-get update && apt-get -y upgrade

echo "

echo " Installing Docker"

echo "

apt-get install -y linux-image-extra- $(uname -r) linux-image-extra-virtual

apt-get install -y apt-transport-https ca-certificates curl

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | apt-key add -
add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu
stable"

apt-get update

apt-get -y install docker-ce =17.03.2~ce-0~ubuntu-trusty cgmanager
sudo echo 'export http_proxy="" >> [etc/default/docker

sudo echo ‘export https_proxy="" >> /etc/default/docker

sudo echo ‘export no_proxy="" >> [etc/default/docker

sudo service docker restart

sleep 5

echo " ®
echo " Installing nomad"
echo " "
apt-get install -y zip

curl -0 nomad.zip https://releases.hashicorp.com/nomad/0.5.6/nomad_0.5.6_linux_amd64.zip
unzip nomad.zip
mv nomad /usr/bin

echo " E

echo " Creating config.hcl"

echo " :

export PRIVATE_IP =" $(/shin/ifconfig ethO | grep ‘inet addr:' | cut -d: -f2

mkdir -p /etc/nomad
cat <<EOT> /etc/nomad/config.hcl
log_level = "DEBUG"

data_dir = "/opt/nomad"
datacenter = "us-east-1"

advertise {

E http=" $PRIVATE_IP "
E rpc=" $PRIVATE_IP "
E serf=" $PRIVATE_IP "
}

client {

E enabled = true

m»

Expecting to have DNS record for nomad server(s)
servers = [" $SERVICES_PRIVATE_IP:4647"]
node_class = "linux-64bit"

m m

options = {"driver.raw_exec.enable" = "1"}

-~ m

telemetry {
E publish_node_metrics = true

E statsd_address =" $SERVICES_PRIVATE_IP:8125"

}
EOT

echo

echo " Creating nomad.conf"

$(Isb_release

| awk ‘{print $1}'

-cs)

echo "

cat <<EOT> /etc/init/nomad.conf
start on filesystem or runlevel [2345]
stop on shutdown

script

E exec nomad agent -config /etc/nomad/config.hcl
end script

EOT

echo "

echo " Creating ci-privileged network"
echo "

docker network create --driver =bridge --opt com.docker.network.bridge.name =ci-privileged ci-
privileged

echo "
echo " Starting Nomad service"
echo "

service nomad restart

echo "
echo " Setting up Nomad metrics"
echo "
docker pull $CONTAINER_IMAGE

docker rm -f $CONTAINER_NAMH| true

docker run -d --name $CONTAINER_NAMHE

E -rm \

E --net =host \

E -userns =host \

E $CONTAINER_IMAGE\

E start --nomad-uri =http://localhost:4646 --statsd-host =$SERVICES_PRIVATE_IP --statsd-port

=$NOMAD_METRICS_POR%¥client

Updating the Auto Scaling Group

Select the Auto Scaling Groups (ASG) link in the the sidebar on the left.
. Select the ASG with a name tag similar to*_nomad_clients_asg

. In the description box at the bottom, select the Edit button.

1.
2
3
4. Select the newly created Launch Configuration from the drop-down.
5. Press thesave button.

6

. At this point, the older Nomad client instances will begin shutting down. They will be replaced with
newer Nomad clients running Nomad Metrics.

StatsD Metrics

! Metrics sent via StatsD will be updated every 10s.

--Server

| The number of jobs in a terminal state complete and dead) will typically increase until
. Nomad garbage-collects the jobs from its state.
Name Type Description
circle.nomad.server_agent.poll_failure Gauge 1 if the last poll of the

circle.nomad.server_agent.jobs.pending

circle.nomad.server_agent.jobs.running

circle.nomad.server_agent.jobs.complete

circle.nomad.server_agent.jobs.dead

--client

Name

circle.nomad.client_agent.poll_
failure

circle.nomad.client_agent.resou
rces.total.cpu

circle.nomad.client_agent.resou
rces.used.cpu

circle.nomad.client_agent.resou
rces.available.cpu

circle.nomad.client_agent.resou
rces.total. memory

circle.nomad.client_agent.resou
rces.used.memory

circle.nomad.client_agent.resou
rces.available.memory

circle.nomad.client_agent.resou
rces.total.disk

Type
Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Gauge

Nomad agent failed; O
otherwise. This gauge is set
independent of
circle.nomad.client_agent.p
oll_failure when nomad-
metrics is operating in

--client and --server modes
simultaneously.

Total number of pending jobs
across the cluster.

Total number of running jobs
across the cluster.

Total number of complete
jobs across the cluster.

Total number of dead jobs
across the cluster.

Description

1 if the last poll of the Nomad
agent failed; 0 otherwise.

(See below)

(See below)

(See below)

(See below)

(See below)

(See below)

(See below)

Name Type
circle.nomad.client_agent.resou Gauge
rces.used.disk

circle.nomad.client_agent.resou Gauge
rces.available.disk

circle.nomad.client_agent.resou Gauge
rces.total.iops

circle.nomad.client_agent.resou Gauge
rces.used.iops

circle.nomad.client_agent.resou Gauge

rces.available.iops

¥ CPU resources are reported in units of MHz. Memory resources are reported in units

Description

(See below)

(See below)

(See below)

(See below)

(See below)

of MB. Disk (capacity) resources are reported in units of MB.

¥ Resource metrics are scoped to the Nomad node that nomad-metrics has been
configured to poll. Figures from a single nomad-metrics job operating in--client
mode are not representative of the entire cluster (Though these timeseries may be
aggregated by an external mechanism to arrive at a cluster-wide view.)

¥ All metrics in the circle.nomad.client_agent.resources

namespace will be

accompanied with the following tags when writing to DogStatsD:

I drain :true if the Nomad node has been marked as drainedfalse

I' status : One of initializing

, ready , Or down.

Setting Up HTTP Proxies

This document is intended for system administrators of self-hosted installations of CircleCl Server.

This section describes how to configure CircleCl to use an HTTP proxy.

Overview
If you are setting up your proxy through Amazon, read this before proceeding:
Using an HTTP Proxy - AWS Command Line Interface

Avoid proxying internal requests, especially for the Services machine. To add these to theio_PrRoxYules,
run:

export NO_PROX¥<services _box_ip>

In an ideal case, traffic to S3 will not be proxied, and will instead be bypassed by adding
s3.amazonaws.com,*.s3.amazonaws.com to the NO_PROXYuUle.

These instructions assume an unauthenticated HTTP proxy at.0.0.0.33:3128 , a Services machine at
10.0.1.238 and use ofghe.example.com as the GitHub Enterprise host.

] The following proxy instructions must be completed before installing CircleClI on fresh
VMs or instances. You must also configure JVM OPTs again as described below.

Service Machine Proxy Configuration
The Service machine has many components that need to make network calls, as follows:

¥ External Network Calls - Replicated is a vendor service that we use for the Management Console of
CircleCl. CircleCl requires Replicated to make an outside call to validate the license, check for updates,
and download upgrades. Replicated also downloads docker, installs it on the local machine, and uses a
Docker container to create and configure S3 buckets. GitHub Enterprise may or may not be behind the
proxy, but github.com will need to go through the proxy.

¥ Internal Network Calls

I If S3 traffic requires going through an HTTP proxy, CircleCl must pass proxy settings into the
container.

I The CircleCl instance on the Services machine runs in a Docker container, so it must to pass the
proxy settings to the container to maintain full functionality.

Set up Service Machine Proxy Support

For a static installation, not on AWS, SSH into the Services machine and run the following code snippet with
your proxy address:

https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-proxy.html#cli-configure-proxy-ec2

echo '{"HttpProxy": "http://<proxy-ip:port>"}" |
sudo tee /etc/replicated.conf

(cat <<'EOF'
HTTP_PROXY=<proxy-ip:port>
HTTPS_PROXY=<proxy-ip:port>

EOF

| sudo tee -a /etc/circle-installation-customizations

Esudo service replicated-ui stop; sudo service replicated stop;

Esudo service replicated-operator stop; sudo service replicated-ui start;
E sudo service replicated-operator start; sudo service replicated start

If you run in AmazonOs EC2 service then youOll need to inclut®.254.169.254 EC2 services as shown
below:

echo '{"HttpProxy": "http://<proxy-ip:port>"}' |

sudo tee /etc/replicated.conf

(cat <<'EOF'

HTTP_PROXY=<proxy-ip:port>

HTTPS_PROXY=<proxy-ip:port>

NO_PROXY=169.254.169.254,<circleci-service-ip>,

127.0.0.1,localhost,ghe.example.com

JVM_OPTS="-Dhttp.proxyHost=<ip> -Dhttp.proxyPort=<port>

-Dhttps.proxyHost=<proxy-ip> -Dhttps.proxyPort=<port) -Dhttp.nonProxyHosts=169.254.169.254|<circleci
-service-ip>|

127.0.0.1|localhost|ghe.example.com”

EOF

| sudo tee -a /etc/circle-installation-customizations

Esudo service replicated-ui stop; sudo service replicated stop;

Esudo service replicated-operator stop; sudo service replicated-ui start;
E sudo service replicated-operator start; sudo service replicated start

The above is not handled by by our enterprise-setup script and will need to be added to
. the user data for the Services Machine startup or done manually.

Corporate Proxies

When our instructions ask if you use a proxy, you will also be prompted to input the

address. It isvery important that you input the proxy in the foIIowin~g format:
<protocol>://<ip>:<port> . If you miss any part, thenapt-get wonOt work correctly and
the packages wonOt download.

Nomad Client Configuration

External Network Calls

CircleCl usescurl andawscli scripts to download initialization scripts, along with jars from Amazon S3. Both
curl andawscli respect environment settings, but if you have whitelisted traffic from Amazon S3 you
should not have any problems.

Internal Network Calls

¥ CircleCl JVM:
I' Any connections to other Nomad Clients or the Services machine should be excluded from HTTP
proxy
I' Connections to GitHub Enterprise should be excluded from HTTP proxy
¥ The following contains parts that may be impacted due to a proxy configuration:
I Amazon EC2 metadata Thisshould not be proxied. If it is, then the machine will be misconfigured.
I Amazon S3 traffic N note S3 discussion above

I Amazon EC2 API - EC2 API traffic may need to be proxied. You would note lots of failures (timeout
failures) in logs if the proxy setting is misconfigured, but it will not block CircleCI from functioning.

Nomad Client Proxy Setup

¥ If you are installing CircleCl Server on AWS using Terraform, you should add the below to your Nomad
client launch configuration B these instructions should be added to/etc/environment

¥ If you are using Docker refer to the Docker HTTP Proxy Instructions documentation.

¥ If you are running a static installation, add the following to the server before installation:

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.docker.com/engine/admin/systemd/#/http-proxy

#!/bin/bash

(cat <<'EOF

HTTP_PROXY=<proxy-ip:port>
HTTPS_PROXY=<proxy-ip:port>
NO_PROXY=169.254.169.254,<circleci-service-ip>,
127.0.0.1,localhost,ghe.example.com
JVM_OPTS="-Dhttp.proxyHost=<ip> -Dhttp.proxyPort=<port>
-Dhttps.proxyHost=<proxy-ip> -Dhttps.proxyPort=3128
-Dhttp.nonProxyHosts=169.254.169.254|<circleci-service-ip>|
127.0.0.1|localhost|ghe.example.com”

EOF

) | sudotee -a /etc/environment

set -a
. letc/environment

You will also need to follow the Docker instructions to make sure your containers have outbound/proxy
access.

Troubleshooting

CanOt access the Management Console

If you cannot access the CircleCl Management Console, but the Services machine seems to be running, try
to SSH tunnel into the machine by running the following, substituting your proxy address and the IP address
of your Services machine:

ssh -L 8800:<address you want to proxy through>:8800 ubuntu@<ip_of_services_machine>

REPL time out

If you experience a timeout when connecting to the REPL, you will need to allow access, through your
corporate proxy, to the domains of any Clojure library repositories that are required to download
dependencies for running the REPL.

sudo su
docker exec -it frontend /bin/bash
lein repl :connect 6005

Refer to the error output for guidance on which repositories need to be granted access. The list will be
different for each corporate proxy, but following is an example list:

¥ repol.maven.org

¥ build.clojure.org

¥ clojars.org

https://docs.docker.com/network/proxy/

