
Evaluating
your CI/CD
Evaluating
your CI/CD

Is your CI/CD
platform holding
you back?

(Re) Evaluating CI/CD: A guide for 2025 and beyond

T H E D E C I S I O N T O R I P and replace a CI/CD platform isn’t usually made on a whim.
The conversation usually starts after enough friction builds up: slow pipelines, reliability issues,
growing maintenance work, or developer complaints that don’t go away.

Sometimes the problem is a legacy system held together with custom scripts and undocumented
know-how. Other times, it’s a newer tool that comes bundled with a suite of enterprise
software—convenient at first, but never quite a perfect fit for how your teams actually build and
ship software.

Either way, you reach a point where the cost of staying put outweighs the effort to change.

This guide is for teams approaching that point (or suspecting they might be). It’s designed for
engineering and business leaders who have the courage to ask,

“Is our current CI/CD setup really serving us, or are we
holding ourselves back?”

We’ll walk through the signs that it might be time to re-evaluate and show you how to structure
a smart, focused evaluation process that leads to an optimal decision. And when you’re ready to
take action, you’ll get a complete RFP template and scoring framework to guide the process with
clarity and speed.

Let’s start with what those early signals look like, and why they’re easy to ignore until
they’re not.

| 2

C I / C D I S M I S S I O N - C R I T I C A L A N D D E E P LY E M B E D D E D, W H I C H M A K E S I T
H A R D T O R E P L A C E . Teams rarely launch a full evaluation after a single failure.
Instead, performance issues like slow pipelines, test flakiness, or unclear ownership build up over
time. That friction becomes hard to ignore when the organization starts to shift and your tooling
can’t keep up. Here are some of the most common catalysts for reevaluating CI/CD tooling.

Is it time to rethink your CI/CD platform?
Growth reveals bottlenecks
A setup that worked fine for a few teams starts to show strain as your engineering organization
scales. Platform teams spend more time supporting pipelines and less time improving
infrastructure. Teams begin duplicating effort. What was once fast and flexible starts to feel
brittle and hard to govern.

Security and compliance raise the bar
Pressure from audits, new regulations, or security-conscious leadership can make existing
CI/CD workflows feel suddenly inadequate. Visibility, access controls, artifact traceability, and
policy enforcement all become harder to manage without the right tooling in place.

AI changes the development tempo
Teams using coding assistants or agent-based tooling are shipping more, faster. But that speed
creates new risks. Without robust, adaptable pipelines, it’s hard to keep up with code validation,
testing, and security scanning. Workflows need to evolve to support automation and review at
scale without slowing things down.

Platform investments need better foundations
If you’re investing in internal developer platforms, golden paths, or reusable components,
your CI/CD system becomes a core dependency. Legacy or VCS-bound tools often can’t support
the modularity, observability, or policy controls that platform teams require.

Complexity outpaces convenience
Application changes don’t just happen on Git push. Infrastructure updates, container image
changes, database migrations, dependency upgrades, prompt tuning, and model deployments
are all part of the delivery landscape now. Teams need orchestration that works across systems,
not just within them.

Modernization and cost scrutiny shift priorities
Leadership-driven mandates to modernize engineering practices, adopt platform strategies, or
reduce tooling spend can expose CI/CD as a gap. What worked before may no longer align with
how your teams (or your budget) are expected to operate.

Product and org change expand delivery needs
New product initiatives, increased service count, or organizational restructuring can break
assumptions about how work gets done. As delivery patterns shift, CI/CD tooling that was once
sufficient may no longer fit.

| 3

These changes aren’t always dramatic at first, which is why many teams put off re-evaluating.
But when they start stacking up, they point to the same question: Does your CI/CD platform still
fit the way your teams need to work?

How to know when your CI/CD needs are outgrowing
your tools?
I F T W O O R M O R E O F T H E S E PAT T E R N S A P P LY, your platform likely isn’t keeping up.
It may be time to begin a structured evaluation.

W H AT YO U ’ R E S E E I N G W H AT I T L I K E LY M E A N S

Your current tool doesn’t support the
workflows your org actually needs

Developer experience is degrading and
velocity is being impacted

Your CI/CD system is becoming a
blocker to org-wide priorities

Your pipelines may not be ready for
the pace or complexity of modern
code generation

You’ve outgrown a general-purpose tool
that wasn’t built to scale with your org

Your platform lacks the flexibility or
efficiency to meet evolving org priorities

Your current tool doesn’t support the
workflows your org actually needs

Developer experience is degrading
and velocity is being impacted

Your CI/CD system is becoming a
blocker to org-wide priorities

Your pipelines may not be ready
for the pace or complexity of modern
code generation

You’ve outgrown a general-purpose tool that
wasn’t built to scale with your org

Your platform lacks the flexibility or
efficiency to meet evolving org priorities

Many teams ignore these symptoms for longer than they should, not because the problems
aren’t real, but because changing systems can be a daunting undertaking—especially if you
don’t have a high degree of certainty that your new system will deliver against your needs.

Improving CI/CD creates space for faster delivery, fewer incidents, and more time spent building.
The impact is measurable. If the signals are showing up, it’s time to start the conversation about
your CI/CD strategy.

| 4

https://circleci.com/blog/business-value-of-software-delivery/

Building the case for change
R E C O G N I Z I N G T H E N E E D F O R C H A N G E I S O N E T H I N G .Getting everyone on
board is another. Before launching an evaluation, make sure your key stakeholders are aligned.
Not on what to adopt, but on whether the current platform is holding you back.

Four steps to alignment

1. Name the pain clearly
Document specific issues like build failures, long feedback loops, duplicate workflows,
and platform team support load. Be specific and grounded in real examples.

2. Tie it to business impact
Translate the friction into outcomes leadership cares about: missed deadlines, developer
attrition, incident recovery time, or slow adoption of AI workflows.

3. Find your allies
You will need voices from platform, security, and team leads. Talk to the ones already
frustrated. Get their input early and bring them into the evaluation process.

4. Set the scope
Be clear about what this is. A formal evaluation of whether your current CI/CD platform can
meet the needs of your organization going forward. That includes looking at alternative tools and
understanding what a change would take.

You’re seeking support to explore real alternatives and make an informed choice.

These steps won’t get you full consensus overnight, but they give you a clear starting point.
Once there’s agreement that the current system deserves a closer look, you can begin shaping
an evaluation process that’s structured, inclusive, and built to lead to a decision.

| 5

What should your evaluation process look like?

C I / C D E VA L U AT I O N S W O R K B E S T W H E N T H E Y ’ R E S Y S T E M AT I C .
A Request for Proposal (RFP) helps anchor the process. It captures your technical and
organizational needs, helps you ask consistent questions, and gives stakeholders a shared
framework for comparison. Even if you don’t follow a formal procurement process, an RFP helps
clarify what matters and why. A strong RFP process comes down to four elements:

E VA L U AT I O N T E A M

Build a small (3-5 person), cross-functional
group responsible for shaping and driving
the evaluation.
Evaluators may include:
•	 Engineering leadership
•	 Platform or DevEx owners
•	 Security, compliance, or

governance leads
•	 Finance or procurement
•	 Developers familiar with current pipelines

and workflows
This team anchors the process, aligns on
priorities, and ensures the evaluation reflects
real organizational needs.

P L AT F O R M R E Q U I R E M E N T S

Translate your pain points and future goals into
clear, structured evaluation criteria.
•	 Fit with your architecture and deployment

model Security, compliance, and policy
enforcement needs

•	 Developer workflow flexibility and team
autonomyEcosystem compatibility and
integration requirements

•	 Support for platform engineering and
AI-augmented development

These requirements form the backbone of your
RFP and shape how you compare vendors.

B A S E L I N E A S S E S S M E N T

Get clear on where you are before
comparing options:
•	 Tools and scripts in active use
•	 Sources of developer frustration or delay
•	 Support and maintenance burdens for

platform teams
•	 Gaps exposed by audits, incidents,

or delivery slowdowns
•	 Metrics like build time, test failure rate,

or onboarding duration
This baseline gives your RFP clarity and
grounds vendor responses in reality.

G U I D I N G Q U E S T I O N S

Craft targeted questions that reveal how
each platform handles your most important
requirements and growth plans.
•	 How does the platform scale with growing

teams and workloads?
•	 What controls exist for secrets, policies,

and audit visibility?
•	 What ecosystem integrations are

supported and maintained?
•	 How is AI-assisted development supported

or governed?
These questions help surface tradeoffs
early and steer the RFP toward practical,
real-world fit.

| 6

O N C E YO U H AV E T H E S E I N P L A C E , you’re ready to run a structured evaluation.
Once you have these in place, you’re ready to run a structured evaluation. That starts by compiling
a full RFP—a clear, shareable document that organizes your criteria and questions in a format
vendors can respond to.

This does not need to be a formal procurement artifact. Think of it as a working tool that helps
your team evaluate consistently and keep the decision grounded in what matters.

1. Compile the RFP document
Group your requirements and questions into themes like technical capabilities, security,
developer experience, support, and commercial terms. Use a format that invites clear written
responses instead of vague marketing language.

H I N T : If you want a head start, the evaluation toolkit at the end of this guide includes a
ready-to-use RFP template, prefilled with critical questions that surface real differences
between platforms.

2. Identify serious candidates
Shortlist a few platforms that align with your technical and organizational needs.
Look past surface features and focus on how each one maps to your priorities.

3. Distribute and review
Send the RFP to selected vendors. Provide context, evaluation goals, and timelines.
Ask for written responses that speak directly to your questions.

Once responses are in, you’re ready to score and compare results.

Scoring and making your decision
O N C E YO U ’ V E G AT H E R E D I N P U T and vendor responses, you’ll need a way to compare
options clearly. This is where a structured scoring model pays off.

Use a shared scoring framework
Weight your evaluation criteria based on your priorities, whether that’s security, developer
experience, or technical capabilities. Then score each vendor against those criteria using the
answers they provided.

A shared scoring model helps normalize input across stakeholders, so a concern from the
security team gets measured alongside feedback from engineering leads. This avoids recency
bias, over-indexing on shiny features, or relying on the loudest voice in the room.

H I N T :You’ll find a complete scoring template in the evaluation toolkit linked at the end of
this guide.

| 7

Get to alignment, not unanimity
You may not get full agreement. But if everyone agrees on the process and has
visibility into the results, you can move forward with shared confidence, even if tradeoffs
are involved.

Reduce risk with a pilot
For top contenders, run a time-boxed proof of concept. Choose real workloads, not synthetic
examples. Focus on developer experience, performance at scale, and integration with
existing systems.

This gives your team hands-on exposure while reducing uncertainty around migration or
implementation cost.

From decision to rollout

O N C E YO U ’ V E C H O S E N A D I R E C T I O N , the handoff from evaluation to implementation
is just as important.

Plan for rollout in phases
Start with a few teams or services that reflect different delivery patterns. Use that to pressure
test the platform, refine onboarding materials, and collect feedback.

Don’t try to migrate everything at once. The goal is to build confidence and momentum,
not force a switch overnight.

Invest in internal enablement
Your CI/CD platform is foundational. Give it the same support you would a new internal tool: clear
documentation, golden examples, ownership, and a path for feedback.

Highlight improvements in developer experience, delivery speed, or incident response.
These wins build trust and help drive adoption organically.

Measure impact over time
Look at more than pipeline speed. Are developers spending less time maintaining builds?
Has platform support load gone down? Are new services getting to production faster?

These are the signs of a successful transition, and the evidence you need to show that your
investment was worth it.

| 8

Your evaluation toolkit

T H I S G U I D E H E L P S YO U know when it’s time to rethink your CI/CD tooling and how to run a
structured evaluation with confidence.

To make that easier, we’ve prepared a complete set of resources for you:

•	 RFP Template: A customizable document that outlines key evaluation categories, the
questions you should be asking, and a structure for comparing vendors objectively.

•	 Scoring Guide: A flexible model that helps you weight priorities, capture input from multiple
stakeholders, and surface meaningful tradeoffs across platforms.

Everything in this guide is reflected in these tools. They are designed to save time, support
better decisions, and help your team evaluate with clarity.

The best time to fix CI/CD is before it becomes the reason your team slows down. If you’re ready
to move forward, the tools are here to help you do it right.

| 9

https://docs.google.com/document/d/1Jok6j0GLkWoz4BuSCK9caeoapXpHtyveTMGbI28RPWY/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1pu9vWKrK-lJaSAtwO1TJPOcd-QygspYRMtUVeTYTRPU/edit?usp=sharing

