
1The Building Blocks of a High-Performing DevOps Culture

The Building Blocks
of a High-Performing
DevOps Culture

M E T R I C S

A N D M E T H O D S

F O R I M P R OV I N G

E N G I N E E R I N G V E LO C IT Y

A N D E F F I C I E N C Y

2The Building Blocks of a High-Performing DevOps Culture

Today’s engineering leaders are under immense pressure to ship code. Customers have
high demands and businesses need new ways to evolve, grow, and adapt. Employing
DevOps principles such as continuous integration and delivery (CI/CD) enables teams to
ship high integrity code, faster. But relying exclusively on tools will not get you there. Across
thousands of teams, we’ve seen that the top teams have something in common: they’ve
fostered a culture in which DevOps practices can thrive. This guide will show you what you
need to build a DevOps-friendly culture in your organization.

This guide will cover:

• TRACKING THE RIGHT SUCCESS METRICS

• STRUCTURING OPERATIONS

• PRACTICES OF TOP-PERFORMING TEAMS

W HY R E A D

T H I S

G U I D E?

3The Building Blocks of a High-Performing DevOps Culture

 Continuous integration (CI) and continuous delivery (CD)
embody a culture, set of operating principles, and collection
of practices that enable application development teams
to deliver code changes more frequently and reliably. The
implementation is also known as the CI/CD pipeline.”

from InfoWorld

“

4The Building Blocks of a High-Performing DevOps Culture

Almost every engineering team experiences tight deadlines and pressure: task backlogs
are endless, and there aren’t enough hours in the day to manage a full workload. There’s too
much to do and too little time.

It’s this reason why engineering teams are moving to a model of continuous integration and
delivery: instead of launching updates in infrequent batches, you can deploy updates on a
continuous basis. The idea is that you can shorten the path from ideation to execution and
deployment. When teams find momentum, more gets done. Consider the example of Etsy,
as an example. According to the company’s engineering blog, the people responsible for
developing code are responsible for shipping it. A group of engineers, known internally as
a push train, work together to release updates up to 50 times per day.

“This strategy has been successful for a lot of reasons, but especially because each deploy
is handled by the people most familiar with the changes that are shipping,” writes Sasha
Friedenberg, an engineer who has been with Etsy for more than five years. “Those that
wrote the code are in the best position to recognize it breaking, and then fix it. Because of
that, developers should be empowered to deploy code as needed, and remain close to its
rollout.”

To empower your engineering team, you need the right workflows and processes. But
these routines aren’t always easy to develop. You likely don’t have time for trial-and-error,
either. It’s important to remember that DevOps—a synthesis between development and
operations— is a relatively new business function, which means that many companies may
not necessarily have their technical workflows in alignment.

We wrote this guide to help engineering team leaders unite people and processes, without
arduous trial-and-error. Part I introduces metrics that your team can monitor. In Part II,
you’ll get tips and best practices from CircleCI customers.

I NT R O D U CT I O N

H O W

P E O P L E

P R O C E S S E S A N D

C O D E D E P LOY M E NTS

I NT E R S E CT

5The Building Blocks of a High-Performing DevOps Culture 5The Building Blocks of a High-Performing DevOps Culture

E N G I N E E R I N G V E LO C IT Y M E T R I C S 6

E N G I N E E R I N G E F F I C I E N C Y M E T R I C S 11

PA RT I

H O W TO M E A S U R E T E A M A L I G N M E NT

6The Building Blocks of a High-Performing DevOps Culture

The CircleCI team is constantly evaluating and analyzing the
practices used by our customers to understand what the most
successful engineering cultures share in common. In one study,
we queried a sample of projects on GitHub and Bitbucket, all built
on CircleCI’s cloud platform, and matched these entities to Global
Alexa Internet Rankings. We enriched this data with ClearBit. We
compared the top 10% of Alexa Internet ranked organizations
to the list as a whole, to understand what top performers do
differently. We found there were 3 metrics that formed the
foundation of our top teams’ ability to move quickly.

Let’s look into these key velocity metrics:

6The Building Blocks of a High-Performing DevOps Culture

7The Building Blocks of a High-Performing DevOps Culture 7The Building Blocks of a High-Performing DevOps Culture

E N G I N E E R I N G

V E LO C IT Y

M E T R I C S

8The Building Blocks of a High-Performing DevOps Culture

This is the master mold for every feature branch that your developers create. CircleCI
measures it as the percentage of wall-clock time as a project’s default brand spent in a
failed state.

Mainline branch stability is a measure of deployment readiness. If your mainline branch
isn’t stable, you’re not going to be able to push code live.

Median stability is 98.5%, and the top percentile is 99.9%.

80% of all organizations keep their master branch stable 90% of the time

B E N C H M A R K S

V A L U E

D E F I N I T I O N

M A I N L I N E B R A N C H S TA B I L IT Y E N G I N E E R I N G

V E LO C IT Y

M E T R I C S

9The Building Blocks of a High-Performing DevOps Culture

After code has been written, reviewed, and tested, it still needs to be delivered to users. The time it
takes for code to move from the mainline branch to production can range from a few minutes to
many hours.

CircleCI measures deploy time as the number of wall-clock minutes in between queuing and
completing a build.

Deploy time is a measurement of deploy cost. The lower the deploy time, the less expensive it is to
change your product.

Engineers waste less time waiting for deploys, allowing them to start new work more quickly.
Product owners can conduct more experiments and build more prototypes.

Customers see changes faster, and bugs can be patched within minutes of being spotted.

80.2% of organizations deploy in under 15 minutes. The fastest organizations (95th percentile)
deploy in 2.7 minutes, while the median is at 7.6 minutes.

From there, a long tail extends to 30 minutes for the bottom 5th percentile. Among top performers
(10th percentile of AIR orgs), 80% deploy in less than 17 minutes, with the top 5th percentile at 2.6
minutes.

The median for these organizations is 7.9 minutes, and the bottom 5th percentile is at 36.1 minutes.

B E N C H M A R K S

V A L U E

D E P LOY T I M E

D E F I N I T I O N

E N G I N E E R I N G

V E LO C IT Y

M E T R I C S

10The Building Blocks of a High-Performing DevOps Culture

CircleCI measures deploy frequency as the median number of “default-branch” builds
run on its platform, with a valid deploy step per week.

This metric captures deployment speed. It’s a signal that releases are making their way
to the market—and problems are getting solved—faster.

75% of all organizations deploy their most active project less than 13 times a week.
Top performers (95th percentile) deploy their mainline branch 32 times per week; that’s
over 5 times the median and nearly 24 times the bottom 5th percentile.

B E N C H M A R K S

V A L U E

D E P LOY F R E Q U E N C Y

D E F I N I T I O N

E N G I N E E R I N G

V E LO C IT Y

M E T R I C S

11The Building Blocks of a High-Performing DevOps Culture

Velocity is only half the story; you’re going fast, but you need
reliable metrics to capture the value you create. How effective is
your team in keeping up with the needs of your market? Are your
efforts yielding an impact? While engineering velocity metrics
tell you whether your team’s operational processes are in good
working order, efficiency metrics help ensure that you’re headed
in the right direction.

11The Building Blocks of a High-Performing DevOps Culture

12The Building Blocks of a High-Performing DevOps Culture 12The Building Blocks of a High-Performing DevOps Culture

E N G I N E E R I N G

E F F I C I E N C Y

M E T R I C S

13The Building Blocks of a High-Performing DevOps Culture

C O M M IT-TO-D E P LOY T I M E (C DT) E N G I N E E R I N G

E F F I C I E N C Y

M E T R I C S

This is the time it takes for code to go from commit to deploy. In between, it could go
through testing, QA, and staging, depending on your organization.

Ideally, if you’ve implemented continuous integration (CI) best practices and you have
sufficient automated test coverage, you can get from commit to deploy ready status in
mere minutes, even seconds for a microservice.

If you have a largely manual QA process, that will likely mean your commit-to-deploy
time is longer, and you have room to improve.

Fast-moving organizations make hundreds of deployments a day.

Slower-paced teams make deployments daily or even weekly.

The range varies by business model and team structure.

B E N C H M A R K S

V A L U E

D E F I N I T I O N

14The Building Blocks of a High-Performing DevOps Culture

B U I L D T I M E E N G I N E E R I N G

E F F I C I E N C Y

M E T R I C S

One of the biggest wastes of time is when engineers and developers sit around waiting
for tests to finish running. The bigger and more comprehensive these tests, the more
time they tend to take.

If you have two developers waiting on a test, both paid

$50/hour (~$100,000 per year), then a 10-minute build time will cost you about $17 in
lost productivity.

If each developer runs five similar tests a day, it would add up to $833 a week ($43,000
a year)

Build times vary between tests, teams and organizations. Aim to keep this number as
low as possible to conserve valuable time.

B E N C H M A R K S

V A L U E

D E F I N I T I O N

15The Building Blocks of a High-Performing DevOps Culture

More subtle than build time is the amount of time engineers have to wait before their
build even executes. Long queue times are expensive.

While engineers could work on another project, they run the risk of losing valuable
context on the feature they just wrote. Instead of focusing on their next project, they’ll
be tied to the change they’re waiting to test.

This metric is highly dependent on the size of your organization, as well as the number
of simultaneous features in development.

B E N C H M A R K S

V A L U E

D E F I N I T I O N

Q U E U E T I M E E N G I N E E R I N G

E F F I C I E N C Y

M E T R I C S

16The Building Blocks of a High-Performing DevOps Culture

M A S T E R D O W NT I M E L E N G T H E N G I N E E R I N G

E F F I C I E N C Y

M E T R I C S

Every time master breaks, start a cumulative timer. Divide that number by the rest of
the time in the year so far. That’s the percentage of time master spends “red”. For more
granularity, you could break this down by month or day.

Or: calculate the average time it takes to get master from red back to green. This should
be no more than an hour.

One principle of continuous delivery is an emphasis on always keeping software “green”:
in a deployable state. And if it’s not green, you fix it the minute it breaks instead of letting
it linger.

While master is red, it creates a bottleneck for commits, increasing recovery time and
delaying development.

B E N C H M A R K S

V A L U E

D E F I N I T I O N

17The Building Blocks of a High-Performing DevOps Culture

E N G I N E E R I N G OV E R H E A D E N G I N E E R I N G

E F F I C I E N C Y

M E T R I C S

Engineering overhead includes things like headcount and how much is spent on things
like licenses and AWS, but it also includes tool maintenance.

While many CEOs track the cost of their tools per seat, they don’t look at how much time
it takes to configure, maintain, or monitor those tools.

If a tool is consistently taking a lot of time and attention to function, you might want to
reassess its value. The amount of time engineers spend on tooling reduces the amount
of time they spend working on the product.

B E N C H M A R K S

V A L U E

D E F I N I T I O N

18The Building Blocks of a High-Performing DevOps Culture

Velocity and efficiency metrics, together, can help you assess
how effectively your engineering team is operating. The goal is
to reduce overhead, eliminate downtime, and make sure that
work gets done as smoothly as possible. The underlying story
behind these numbers is how well-equipped the people on your
team are to do their jobs.

An effective culture means giving engineers the resources,
support, and tools that they need to do their best work.

18The Building Blocks of a High-Performing DevOps Culture

19The Building Blocks of a High-Performing DevOps Culture 19The Building Blocks of a High-Performing DevOps Culture

PA RT I I

18 I D E A S TO R E S O LV E D E VO P S B OT T L E N E C K S,

I N C R E A S E V E LO C IT Y, A N D I M P R OV E E F F I C I E N C Y

20The Building Blocks of a High-Performing DevOps Culture

When we asked our top engineering teams what contributed to
their success, we heard the same practices come up again and
again. Each of these ideas has a direct impact on one or more
of the velocity and efficiency metrics referenced above.

Remember that every DevOps culture is unique: before
implementing any new processes, you’ll want to test them in
a controlled setting. Be creative in how you tackle your own
bottlenecks and challenges.

The following recommendations can help you get started.

20The Building Blocks of a High-Performing DevOps Culture

21The Building Blocks of a High-Performing DevOps Culture

3 Implement peer review
processes. Avoid error by
pairing developers together.
Review one another’s work
before your code has a
chance to reach its staging
environment.

5 Release during downtime. Consider
making deployments during low-traffic
times, at nights and weekends, to avoid
the potential for error. This means you
may need to operate in a non-feature-
flag world. Your press releases won’t
coincide with your code shipments, for
instance. But keep in mind that feature
flagging isn’t going to save you from
performance regression or a problem.
Awareness of a feature can never be
taken back. Choosing to release during
downtime—or a time of high-traffic—will
depend on the parameters you’ve set up
for safety. Remember that no team is
immune to error, no matter how talented
and experienced your developers are.

4

8 Run lightweight demos. Especially when
bringing teammates together
to review new features, keep discussions
short and scope-focused. Limit discussion
to five minutes. With multiple eyes on the
same initiative, you’ll surface potential
errors quickly.

9 Pair-develop. At some of the organizations
we analyzed for this guide, engineers
develop code in pairs. This may eliminate
the need for code reviews altogether. You
may be able to prevent errors by getting
two people on an initiative, off-the-bat,
reviewing each others’ work as they
move along. If you don’t feel confident
eliminating your code review process,
you can run intermittent validity tests, for
quality control.

6 Test in production. The world moves
quickly, which means that it doesn’t
always make sense to run tests before you
launch—especially if you’re considering
moving production data into staging
environments. Instead, you can launch and
test the feature on a percentage of your
customer base. You’re likely to get more
accurate results and can pull the feature if
something goes wrong.

 Focus on team morale. Even if
feature releases don’t warrant
a discussion, it’s still important
to share status updates. When
teams get things done, they feel
efficient. Encourage everyone to
move on and accomplish more.

7 Keep code review discussions high-level.
If a test passes, the risk of something
breaking is low. Code review processes
will be more valuable if you spend your
time understanding changes that are
happening on a high level. Give engineers
the opportunity to talk about architecture or
where the codebase is going long-term, so
everyone can focus on efficiency, velocity,
and strategy.

2 Make lots of changes rather than one big
one. Follow the rules of probability. If you
spread your updates into multiple releases,
you’re less likely to break something in a big
way. Don’t put all your deployment eggs in
one basket.

21The Building Blocks of a High-Performing DevOps Culture

1 Document everything. Mistakes are
inevitable. If something breaks, figure out
why. Understand what you can improve, so
tomorrow is a better day. Keep learning.
Keep evolving. Document everything, so
you can share your observations with your
team during meetings or through updates
via email.

22The Building Blocks of a High-Performing DevOps Culture 22The Building Blocks of a High-Performing DevOps Culture

18 Create alignment around user-
centered goals. Every iota of code is
a step towards a larger organizational
objective. For instance, your engineering
team may be responsible for processing
food stamp applications. In this case,
your goal could be as simple as “get
people food.” This perspective will help
teams prioritize their time, day by day.

11 Run regular retrospectives. Once a
month (or on a regular basis), sit down
to analyze what went wrong—and what
went right. These meetings make it easier
for teammates to learn from one another,
adapt to fast-moving changes, and
improve upon processes. These meetings
will help ensure momentum while
alleviating bottlenecks. Celebrate the value
that your team created.

12

15 Keep meetings small. At meetings,
make sure that there are enough
engineers to be productive but not so
many that people are losing context into
what others are doing. This approach
will prevent repeated or conflicting work,
which increase the probability of your
mainline branch going red.

Avoid blame games. DevOps
environments have the potential
to be high pressure and fast-
paced. Mistakes are bound to
happen. When something goes
wrong, encourage discussions.
Focus on learning from the
problem instead of assigning
blame.

13

16

10

Protect your users. Errors have
the potential to impact lives. If
you’re deploying code to manage
bank accounts or medical
documentation, you need to have
a fail-safe or manual recovery plan
for problems that may arise. This
process may include backups and
restorations.

Maintain communication around code
conflicts. It might seem logical to organize
teams around parts of the tech stack
(backend, frontend, operations, etc.), but
these structures have weaknesses: horizontal
slices of engineers have more blind spots
and less insight into how their code affects
others. One alternative is to organize
engineers into functional groups of small
sizes. This approach makes it easier for
teams to meet every day, for instance in a
daily standup.

Create self-contained groups. Teams of
6-7 people are in a strong position to try
ideas on their own, without running into
hiccups. Following a clearly-defined company
protocol, these teams can have the freedom
to experiment with their own processes,
as a testbed for trying new initiatives
companywide.

14 Create bowling alley bumpers. At one
extreme, companies command and control
from the top down. At another extreme,
nobody coordinates with anyone else and
mistakes can arise. One happy medium
is to democratize best practices around
common workflows (i.e. have a master
branch that’s always shippable, a bug
database for tracking known problems, and
SSL certificates on public-facing websites).
With parameters in place, developers have
the freedom to build efficiently, without the
potential for a bottleneck.

17 Connect engineering goals to overall
priorities. CI/CD should not exist in a
vacuum. Prioritize feature releases and
deployments by connecting engineering
efforts to overall company goals. Engage
in cross-department planning sessions
on a quarterly or monthly basis. Figure out
what needs to get done, prioritize it, and
divvy it up week by week.

23The Building Blocks of a High-Performing DevOps Culture

IT E R AT E

O N C U LT U R E

Q U I C K LY

F I N A L T H O U G HTS

Your DevOps culture is, in itself, a product that you build.

Over time, you’ll uncover processes that make sense for your
team. But understand that velocity and efficiency are ongoing
works in progress. It’s crucial that every teammate has an
opportunity to offer up ideas, to report on what’s going well and
what isn’t. Especially if your team is bigger than a few people,
self-organizing into smaller groups can help everyone test
processes and improve upon them. Regular meetings will be
valuable, but only if you’re not focused on the minutiae. Always
prioritize your users, and align your operations with higher-level
business goals.

