
1

How to be a
CI/CD Engineer

A Professional Guide
from Principles and Processes to Pipelines

By Angel Rivera

2How to be a CI/CD Engineer

If you are a CI/CD Engineer, or you want to be, then this is the ebook
for you. I’ll walk you through the many responsibilities and skill sets a
CI/CD Engineer can own on a team as well as their opportunities for
creating massive efficiency and impact for the engineering organization
they are a part of.

We’ll look at:

1. Duties of a CI/CD Engineer

2. Characteristics and strengths common among CI/CD Engineers

3. Emerging patterns in the industry and opportunities for impact

4. Performance benchmarks for CI/CD Engineers to lead their
teams by

What is a CI/CD Engineer?

While the work of CI/CD Engineers isn’t new (CI/CD has been practiced
for over a decade now), there is increasing attention being paid to
the role and its impact within organizations. In 2014, Twitter formed
its “engineering effectiveness” organization. Google has a massive
“engineering productivity” team. Cloud-native companies were among
the first to embrace the role of CI/CD Engineers, but many other
companies are now following in the giants’ footsteps.

For some smaller companies, the role emerges organically. Maybe it’s
an informal responsibility shared by the entire team. Or perhaps one
person sees an issue with a pipeline and steps up to fix it. Though
people in this function often go by different titles (CI/CD Engineer,
DevOps Engineer, Dev Experience Engineer, etc.) it’s clear that this role
has outsize impact on a team.

The world is increasingly built on code; over the next decade, the
number of software developers is expected to grow by 75%. Without a
dedicated CI/CD leader, effectiveness and scale will be challenging.

http://www.gigamonkeys.com/flowers/
https://engineeringproductivity.splashthat.com/#:~:text=At%20Google%2C%20we%20have%20over,new%20ways%20to%20optimize%20workflows.
https://www.future-processing.com/blog/how-many-developers-are-there-in-the-world-in-2019/

3

While this role varies in specific duties and responsibilities by company,
CI/CD Engineers share some duties in common which are key to the
role. These are:

1. Develop CI/CD principles

2. Review and modify CI/CD principles, iteratively

3. Maintain CI/CD tools/platforms (if applicable)

4. Develop and maintain pipeline configurations

5. Automate processes

Develop CI/CD principles
Adoption of CI/CD principles produces huge gains in efficiencies. These
practices are composed of processes that are defined by stakeholders
and facilitate optimized software development. A CI/CD Engineer is an
authority on everything CI/CD. As an authority, they are actively involved
in the development and implementation of these related processes.

Review and modify CI/CD principles, iteratively
Once practices are established, it’s critical that teams continually
revisit and optimize them regularly so that they support current
operations. CI/CD Engineers are in a unique position to develop a deep
understanding of how respective teams are operating and interacting
with the other units. They have insight into what’s working and what’s
not with the added ability to determine and offer corrective actions.
Iterative reviews provide consistent visibility into the processes that
drive software development and surface options for improvement.

Duties of a CI/CD Engineer

4How to be a CI/CD Engineer

Manage CI/CD tools/platforms (if applicable)
The next step after establishing and adopting CI/CD practices and
principles is leveraging CI/CD tooling and platforms to facilitate the
execution of related processes. CI/CD platforms bring these processes
to life and provide the automation that executes specified pipelines.
Implementing and managing CI/CD tooling requires a combination
of skills (this is DevOps at its best), but I suggest that in this aspect a
bit more emphasis on Ops is appropriate. I say this because ensuring
that CI/CD tooling operates consistently definitely falls under the
“operations” wheelhouse. This particular duty is also dependent on
architecture and operational landscapes.

In my experience, organizations operate their CI/CD architectures in 2
different modes:

Managed CI/CD:

 The CI/CD architecture is provided by a 3rd party vendor such
as CircleCI. These services provision, manage, and scale the
underlying CI/CD infrastructure with very little effort from technical
teams. These services are designed to directly serve developers
and strip away all of the hard parts of CI/CD. Engineering teams
are empowered by these tools to develop software and not to
be bothered with the resource-intensive and time-consuming
management of CI/CD infrastructure.

Self-hosted/on-prem CI/CD:

 Managed CI/CD is an excellent option for many organizations,
but due to circumstances such as data laws and government
regulations, self-hosted platforms are still required for certain
industries. Self-hosted CI/CD requires teams to provision and
manage all aspects of their CI/CD infrastructure. Teams manage
these infrastructures holistically which means they have to design,
implement, and manage connectivity, servers/nodes, operating
systems, and the chosen CI/CD tooling that must run securely on
this elaborate infrastructure. This requires lots of time and effort
on behalf of DevOps teams and is a more complex operation.

 Regardless of CI/CD architecture, achieving efficiencies in CI/CD
is critical. Once the tooling is operational, it must remain that way
or risk a decline in performance. Of course, there are many CI/CD
tools available, and selecting the most appropriate one is no small
feat. I advise vetting multiple solutions and choosing the tooling
that best serves your team’s needs.

 CI/CD Engineers could be responsible for some or all aspects of
these CI/CD infrastructures. Ideally, this is a shared duty between
CI/CD Engineers and DevOps Engineers. CI/CD Engineers manage
the CI/CD tooling services and DevOps Engineers manage the
underlying architectures. At the very least, the CI/CD Engineer
must have deep knowledge of the CI/CD platforms they’re
supporting, including the underlying host infrastructure.

5How to be a CI/CD Engineer

Develop and maintain pipeline configurations
All CI/CD tooling requires a form of pipeline configuration, which is the
mechanism that specifies the various steps and segments to execute
within your CI/CD processes. Configuring pipelines is completed in
different ways depending on the CI/CD tool being used. Some tools
make use of a Graphical User Interface (GUI) to configure pipelines,
while others require that pipelines are specified in code. In all cases,
CI/CD pipelines must be specified and maintained, and this duty falls
squarely on the CI/CD Engineer.

Developing, managing, and executing CI/CD pipelines is the biggest
responsibility that this role owns. These pipeline configurations
orchestrate the execution of the steps specified. In other words,
pipeline configurations are how we program the CI/CD tools to do what
we want.

CI/CD Engineers ensure that pipelines are properly defined and
performing optimally. They have a deep understanding of the pipeline’s
goals and the transactions occurring within them. They interface with
DevOps teams to coordinate and optimize the steps that execute within
the pipeline. The CI/CD Engineer documents the pipelines so that all of
the interested parties are aware of how their software is built, tested,
secured, and deployed.

Automate processes
Automation is at the core of CI/CD. It facilitates processing pipeline
commands, inter-platform connectivity, and valuable integrations
with 3rd party services. If you peel back the layers, at the core, CI/CD
Engineers design and manage the automation that powers continuous
integration and delivery operations. The level of experience can vary, but
a foundational knowledge of automation is required to be an effective
CI/CD Engineer.

6How to be a CI/CD Engineer

Characteristics of a CI/CD Engineer

I’ve watched the emergence of this role and spoken to hundreds of
engineers doing this work, and several patterns have become clear
among the most successful CI/CD Engineers. These shared traits
include:

1. Strong communication skills

2. Keen analytical skills

3. Ability to decompose complex processes into
understandable components

4. Proficiency in automating and optimizing processes

5. Competent in team building and team communication
strategies

I’ll go into more detail on how each of these skills
contributes to being a top tier CI/CD Engineer.

7How to be a CI/CD Engineer

Strong communication skills
This role converges on multiple verticals, which requires individuals
to competently communicate and interact with various teams. I can’t
stress this enough: the ability to clearly communicate is critical for
this role.

Keen analytical skills
Much of the work in this role requires an individual to gain a deep
understanding of a variety of concepts and how they relate to
and impact the relevant domains. Being able to accurately assess
respective landscapes is a vital step in improving inefficient processes.

Ability to decompose complex processes into
understandable components
Breaking down complex topics into digestible components is a great
trait to possess in many roles, but it’s especially important in this
context. Someone who combines this ability with keen analytical skills
can help teams understand and capture their current operational states
and existing deficiencies. Having an accurate view of operational
landscapes enables innovative solutions for achieving and maintaining
desired states.

Proficiency in automating and optimizing processes
Identifying deficient steps enables teams to expose pain points and
bottlenecks that diminish the effectiveness of processes. Identification
must happen before teams can address them with viable solutions.
For instance, imagine a process that executes sequentially, meaning
one step needs to complete before another can begin. This behavior
is often called blocking. It’s my experience that most sequential
processes have steps that can be executed in parallel, which removes
this blocking. Being able to devise and coordinate these optimizations
is especially beneficial in this role.

Competent in team building and communication
strategies
This characteristic is based on a collective of the traits I’ve already
mentioned, with the addition of developing and maintaining credibility
within teams and organizations. Credibility is the quality of being
trusted and believed in. People are way more comfortable buying into
and supporting decisions when they’re confident in the individuals
championing the efforts. The goal here is to develop consensus around
decisions and to execute plans that benefit all of the stakeholders.

8How to be a CI/CD Engineer

Over the past few years, concepts and patterns related to DevOps
and continuous delivery (CD) have become more widely accepted in
the industry. It’s easy to see why: competition has increased, and it’s
clear that software is a key differentiator for businesses. Being able
to optimize all aspects of software delivery, from collaboration to
deployment and operation, is more important than ever.

The concepts that I see growing in popularity center around security,
pipeline optimizations, and how to use healthy CI/CD benchmarks.

Security

Pipeline Optimizations

Performance Benchmarks

Emerging Patterns
Opportunities for CI/CD Engineers to Add Value

9How to be a CI/CD Engineer

Security & DevSecOps for CI/CD Engineers
I suggested earlier that security-related duties should be an element of
the CI/CD Engineer’s role. With the increased adoption of DevSecOps
and more developer-friendly tools, security responsibilities and
processes are beginning to “shift left”. This essentially means that
developers are able to confidently incorporate security-related activities
into the initial stages of their CI/CD processes, hence shifting security
considerations left (toward the beginning of these processes) rather
than right (towards the end).

A CI/CD Engineer can establish strong communication channels
between security teams and those responsible for compliance/
regulatory requirements.

These communication channels generate constructive collaborations
between developers and security teams that keep everyone well-
informed about critical requirements. These collaborations also
facilitate adoption of DevSecOps principles, ensuring developers are
knowledgeable and invested in new or unfamiliar security practices.

I’ve identified some security practices that should occur during the
“shift left,” or initial segments, of a CI/CD pipeline. CI/CD Engineers are
in a good position to define these practices. The “shift left” process
streamlines required security tasks and provides valuable feedback
loops, preventing wasted time and resources that occur when you

continue to process downrange pipeline segments that will ultimately
end in failure. It’s much better to catch and fix issues earlier in the
pipeline than later.

Here are some security practices that can be defined and maintained
by a CI/CD Engineer:

• Vulnerability scans
Probe applications for security weaknesses that could expose
them to attacks

• Container image scans
Analyze the contents and the build process of a container
image in order to detect security issues, vulnerabilities, or
deficient practices

• Regulatory/compliance scans
Assess adherence to specific compliance requirements

There are many other industry standard security practices that are
usually implemented in release processes. The examples I mentioned
earlier are just some of the tasks that a CI/CD Engineer can implement
and manage in collaboration with security and DevOps teams. This kind
of collaboration ensures all security and compliance requirements are

automated and consistently applied within CI/CD pipeline segments.

10How to be a CI/CD Engineer

Pipeline optimizations for CI/CD Engineers
I’ve seen a lot of teams treat their CI/CD pipelines in a “set it and forget
it” manner. This is unfortunate. For whatever reason, teams invest
lots of time and effort in automating their software development
and release processes, only to abandon work on them after
implementation. This is mostly driven by fear of disturbing or breaking
something that is critical to releasing software.

The reality is, CI/CD pipelines are meant to represent software
development and release processes. That means they must be
continually monitored, assessed, and adjusted to make sure they
are not only accurately automating your software development and
release processes, but doing so efficiently. These pipelines must be
regularly revisited and tweaked, and that can be an overwhelming
task for individuals that aren’t knowledgeable about all of the pipeline
segments.

This is where the expertise of a CI/CD Engineer can add immense
value. As administrator of the CI/CD pipeline, they can ensure the
pipelines are not neglected and keep functioning efficiently. Some of

the best ways CI/CD Engineers can add value by properly maintaining
and optimizing pipelines in collaboration with appropriate teams
include:

• Pipeline reusability

• Properly sized compute/resource nodes

• Parallelism

• Performance benchmarks for CI/CD Engineers

Pipeline reusability

Many of the pain points I’ve experienced and often discuss with others
revolve around managing the pipeline configurations in CI/CD tooling.
These configurations define pipelines and serve as the execution code
for the automation on CI/CD platforms. They are often expressed in
YAML, domain specific languages (DSL), or some other similar variant.

The syntax in these configuration files are generally limited in
capabilities, especially in regard to reusability. This mainly stems from
the fact that syntax, like YAML, is a declarative data structure and not a
programming language.

11How to be a CI/CD Engineer

Restrictive code reuse due to configuration syntax can be overcome,
but it requires extra effort, such as building execution scripts that
can represent pipeline segments while simultaneously encapsulating
functionality. These configuration reusability issues are common in
most CI/CD platforms and generally have the same impact: they are
very difficult to maintain.

Within CircleCI, this config reusability challenge is solved with
configuration parameters and orbs, an invaluable mechanism that
allows users easily package, maintain, and implement reusable pipeline
configurations.

Regardless of which config reuse tactic teams adopt, it’s very clear that
these config reuse efforts can become very difficult for teams if there
aren't dedicated maintainers. That’s where I see a great opportunity
for the CI/CD Engineer role to drive these efforts. The CI/CD Engineer
can build a solid understanding of common patterns and functionality,
which can be captured and encapsulated into useful dynamic execution
code.

Properly sized compute/resource nodes

A key aspect of maintaining blazing fast pipelines and valuable
feedback loops is ensuring that CI/CD builds are executing on
adequately resourced compute nodes.

It’s very common that pipeline builds are executed on severely
underpowered build resources, and this directly contributes to slower

build speeds and longer feedback loops. Determining the specifications
for an adequately-sized compute node is not a trivial task. The right
balance is one between hardware requirements such as CPU, RAM,
network, disk IO capabilities, and maintaining acceptable build times.
Hardware requirements differ widely between technology stacks
and services, and these details are often neglected by teams. In my
experience, this can occur because teams don’t fully understand their
tech stacks, or they assume that increased compute node capacities
are more expensive than they actually are.

Beefier compute nodes do tend to cost more in general but the cost
is often not as high as most teams fear. I’ve had experience with
decreasing certain build jobs by more than half after moving to an
adequately-powered compute node. By way of example, this specific
build job was taking five minutes to complete on a resource class node
using two CPU cores and 4GB RAM. I upgraded the resource class to 4
CPU cores + 16GB RAM, which completed the build in 2.1 minutes and
only cost a few cents more.

In this scenario, the cost of the resource class did increase a very
small amount but the overall decrease in time for that build job also
decreased tremendously which created greater savings when factoring
other expenses, namely developers waiting for builds to complete. By
decreasing the build times, developers are getting feedback faster and
can move onto other tasks in their sprints.

12How to be a CI/CD Engineer

CI/CD Engineers can assist teams in getting builds executed on
adequately resourced compute nodes. As with many duties shared by
developers and operators, some of these seemingly irrelevant details
are not monitored or addressed until the impact of undersized nodes is
glaringly obvious. Having someone in a role tasked with monitoring and
adjusting these compute node issues can save teams time and money,
while also ensuring that build times are optimal and stay that way.

Parallelism

I’ve observed teams who either don’t fully understand all of their tech
stack’s capabilities, or don’t take full advantage of these capabilities.
For example, I’ve interacted with individuals with comprehensive test
suites that took over 45 minutes to complete within their pipeline
builds. They were convinced that this was the only way to execute their
tests. I was able to help them take advantage of the multi-threaded
processing capabilities included in their tech stack.

Most tech stacks have the capability to execute code in parallel,
which means executing multiple elements and functions at the same
time using the available unused CPU cores of the compute node.
Parallelism, also known as concurrency, is dependent on the tech stack.
It is either offered natively, or it can be implemented by using existing
multi-threading libraries or features. Multi-threading capabilities speed
things up dramatically. They can be engaged at the stack level -- versus
the CI/CD pipeline level -- where code is executed as defined in the CI/

CD configuration syntax. By executing code concurrently, execution
times are optimized from the beginning, and when applied to a build
job in a pipeline, those build jobs become substantially faster, without
having to tweak CI/CD configuration parameters in the build directives.

In this case, a CI/CD Engineer could assist teams in enabling multi-
threading in the core tech stack, and leveraging the often underused
CPU cores when code is executing. This role can identify the build jobs
that are not efficient, and can collaborate on implementing effective
execution strategies. These strategies implement multi-threading
at the tech stack level, spawning concurrent process instances that
exploit all the CPU resources available to it.

These optimizations can also be implemented and executed within
CI/CD platform builds. CircleCI has a parallelism concept which is not
related to the multi-threaded concurrency I discussed earlier. CircleCI’s
version of parallelism enables the execution of multiple build jobs
to occur at the same time on individual executors. Having a CI/CD
Engineer who can oversee these potential optimization opportunities is
yet another justification for the role among DevOps teams.

13How to be a CI/CD Engineer

Performance benchmarks for CI/CD Engineers

A CI/CD Engineer’s job is to help maintain and improve pipeline
consistency and velocity without risking quality. At CircleCI, we have
extensive data regarding the CI/CD builds executed on our platform,
and this data has enabled our team to generate valuable performance
benchmarks. These performance benchmarks are at the core of
some interesting delivery metrics that can be used by teams as goals.
The 2020 State of Software Delivery: Data-Backed Benchmarks for
Engineering Teams shows how software development teams can
measure their performance based on these data points or benchmarks:

 Throughput The number of workflow runs matters
less than being at a deploy-ready state
most or all of the time

 Duration Teams want to aim for workflow
durations in the range of five to ten
minutes

 Recovery Time Teams should aim to recover from any
failed runs by fixing or reverting in under
an hour

 Success Rate Success rates above 90% should be your
standard for the default branch of an
application

https://circleci.com/resources/2020-state-of-software-delivery/
https://circleci.com/resources/2020-state-of-software-delivery/
https://circleci.com/resources/2020-state-of-software-delivery/

14How to be a CI/CD Engineer

These four benchmarks are baseline metrics that should be monitored,
captured, and improved upon. Every organization and team has
unique challenges and goals which impact development productivity.
Controlling that impact hinges on expanding and improving the
underlying processes.

See the research for a more in-depth look at what 55 million
data points tell us about CI/CD performance in practice.

The role of CI/CD Engineer can absolutely help teams conduct
valuable monitoring and analysis on the current health of delivery
and CI/CD performance. With their technical expertise and deep
understanding of pipeline execution, they can collaborate on developing
performance goals and metrics that will help teams achieve and
maintain the results they want.

All too often software development teams are interested in increasing
development velocity but are too disconnected from the actual
build activities that factor into and control these outcomes. A CI/CD
Engineer is closely tied to the delivery process and can effectively
monitor and address deficiencies as they occur, as well as expand and
improve on new or existing benchmarks. They can provide near real-
time surveillance to enable teams to successfully hum along at their
desired pace.

https://circleci.com/resources/2020-state-of-software-delivery/

15How to be a CI/CD Engineer

Conclusion

The CI/CD Engineer is a role that will continue to increase in
importance. As software delivery gets more complex, the role
becomes more impactful to the overall bottom line. A CI/CD
Engineer is an enormous asset to a fast-moving software team.
Imagine having someone on your team who creates paved roads
to increase speed of feature release, monitors security and overall
health of the delivery pipeline, and constantly seeks opportunities
to finely tune and optimize the team’s delivery.

The most impactful CI/CD Engineers know that the right
combination of tooling, culture and collaboration, and an eye
toward continuous improvement, is what sets successful teams
apart. They are committed to finding efficiencies, smoother paths,
and more finely-tuned optimizations to keep their team delivering
the highest quality software.

To explore the preferred tool of
CI/CD Engineers at Facebook, Spotify,

and Coinbase, visit circleci.com.

https://circleci.com/

