
Automating and Scaling
Machine Learning
Workflows with CI/CD

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 2

Machine learning (ML) is becoming an essential technology for many organizations,
driving innovation and improving operational efficiencies. However, bringing ML
models into production environments poses a range of challenges that require careful
consideration and strategic problem-solving.

To streamline the process, continuous integration and continuous delivery (CI/CD)
offers ML teams the ability to automate various stages of ML project development and
deployment. In this guide, we’ll explore the benefits of using CI/CD for ML projects and
how it can help your organization overcome common ML challenges. Then, we’ll walk
through the process of setting up your own CI/CD pipeline to build, test, train, deploy,
and retrain your models for faster, more efficient ML workflows.

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 3

What is CI/CD, and what can it do for your ML models and
workflows?
CI/CD pipelines are an essential tool for any software development team, but
their importance and utility become even more pronounced in the context of
machine learning (ML) projects. A CI/CD pipeline is a framework that enables
developers to integrate their code changes more frequently and reliably into
the codebase. It automatically executes a series of steps every time a code
change occurs, beginning with the integration of the new code, followed by
the building and testing of the whole system to ensure there are no breaking
changes.

For ML development teams, the use of CI/CD pipelines can significantly
streamline their workflows. By automating the testing and validation of
ML models, teams can catch and address issues quickly, speeding up the
development process and reducing the risk of errors in the final product.
Furthermore, CI/CD facilitates consistent and repeatable processes, making
it easier to scale ML operations. With each change to the model or the
data, the pipeline can retrain the model, validate its performance, and if the
performance metrics meet the acceptance criteria, deploy the model to the
production environment.

Effectively implementing a CI/CD pipeline paves the way for MLOps (machine
learning operations) – a practice for collaboration and communication
between data scientists and operations professionals to help manage
production ML lifecycle. MLOps seeks to increase automation and improve
the quality of production ML while also focusing on business and regulatory
requirements. With CI/CD, teams can manage frequent, incremental updates
to models in a manageable and predictable way, ultimately leading to MLOps
that are quick, efficient, and robust.

https://circleci.com/blog/what-is-a-ci-cd-pipeline/

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 4

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 5

Solving the top challenges of ML Model Development with CI/CD

ML model development is a complex process, and
organizations often face a number of challenges that
can affect the success of their projects. CI/CD’s ability to
automate the different stages of ML model development
helps address some of these challenges. Let’s take a look
at some of the most common ones:

Scalability and compute resource management
One of the main challenges that ML developers face is the intensive compute
requirements for building and training large-scale ML models. Indeed, training
large language models (LLMs) like ChatGPT typically consumes billions of
input words and costs millions of dollars in computational resources.

Because of the scale needed to train and develop these models, analysts have
proposed cloud computing to meet the computational demand. However,
using GPU or CPU resources from popular cloud services — such as Amazon
Web Services (AWS) and Google Cloud Platform (GCP) — for extended training
tasks is costly. Moreover, cloud providers’ “unlimited” scaling offerings can
lead to runaway resource usage and associated costs.

CircleCI’s features enable scaling while controlling and monitoring costs. For
training models in the cloud, CircleCI offers several tiers of GPU resource
classes with transparent pricing models. Alternatively, you can use self-hosted
runners to run automated workflows on your own infrastructure for more
flexibility. With this extra versatility, you can configure self-hosted runners to
scale automatically or execute jobs concurrently.

https://towardsdatascience.com/behind-the-millions-estimating-the-scale-of-large-language-models-97bd7287fb6b
https://circleci.com/execution-environments/gpu/
https://circleci.com/docs/runner-overview/
https://circleci.com/docs/runner-overview/

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 6

Reproducibility and environment consistency
Another critical aspect of managing ML model deployment is maintaining
consistency and reproducibility in the build environment. These properties
prevent unexpected errors when restarting CI/CD jobs or migrating from one
build platform to another. Consequently, you can avoid costly build errors
in ML model development, which often features long-running jobs that are
difficult to interrupt.

Fortunately, you can use containerization to isolate deployment jobs from the
surrounding environment to ensure consistency. Meanwhile, deployment using
infrastructure as code (IaC) helps improve the build system’s reproducibility by
explicitly defining the environment details and resources required to execute
a task. As a result, the build is less dependent on platform-specific settings —
you can reproduce and audit it easily.

For these reasons, CircleCI provides tools like Docker executor and container
runner for containerized CI/CD environments, offering a platform that supports
YAML-based IaC configuration.

Testing and validation
Testing is crucial in developing any software project and especially for ML-
powered programs. By nature of their complexity and training, ML models tend
to feature implementation that is opaque to the user, making it near-impossible
to determine a model’s correctness by inspection. Therefore, comprehensive
testing is essential for proper software functionality.

CircleCI excels at integrating testing into the development process. Support
for automated testing makes it easy to ensure code performs as expected
before it goes to production. You can customize tests on the CircleCI platform
using one of many third-party integrations called orbs. You can then monitor
them via SSH debugging or the Insights dashboard.

Security and compliance
Development teams must ensure that software is secure and compliant with
consumer protection laws. This is particularly relevant for ML development,
which often involves processing large amounts of user data during training.
A vulnerability in the data pipeline or failure to sanitize the data could
allow attackers to access sensitive user information. Therefore, security
is a principal consideration at each stage of ML model development and
deployment.

CircleCI provides several CI/CD features to improve the security and
compliance of your application. You can control access to the pipeline using
a role-based credential system with OpenID Connect (OIDC) authentication
tokens, enabling fine-grained management of user access to each step within
the pipeline. Additionally, CircleCI logs important security events and stores
them in audit logs, which you can review later to understand the system’s
security better.

https://circleci.com/docker/
https://circleci.com/docs/container-runner/
https://circleci.com/docs/container-runner/
https://circleci.com/orbs/
https://circleci.com/docs/ssh-access-jobs/
https://circleci.com/docs/insights/
https://circleci.com/blog/automate-software-delivery-compliance/
https://circleci.com/blog/access-control-cicd/
https://circleci.com/blog/role-based-credential-management-with-oidc/
https://circleci.com/docs/audit-logs/

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 7

Deployment automation
New versions of ML models are often developed rapidly, especially during
periods of heightened interest in AI. This makes it challenging to manage
frequent updates to ML systems with several versions in development or
production. To ensure a consistent user experience, you need an easy way to
push new updates to production and determine which versions are currently in
use.

Fortunately, you can deploy code to AWS, GCP, or any other targeted
platform continuously and automatically via CircleCI orbs. Moreover, these
deployments are configurable through IaC to ensure process clarity and
reproducibility. Users can add a manual approval gate at any point in the
deployment pipeline to check that it proceeds successfully.

Monitoring and performance analysis
After deploying an ML model, you must set up production monitoring and
performance analysis software. Due to the size and complexity of modern ML
models such as LLMs, even a comprehensive test suite may fail to ensure their
validity. The only way to determine that a model is performing as expected is
to observe its real-world performance by collecting and aggregating metrics
from the production environment.

With CircleCI, it is easy to integrate monitoring into the post-deployment
process. CircleCI orbs offer options to incorporate monitoring and data
analysis tools like Datadog, New Relic, and Splunk into the CI/CD pipeline.
You can configure these integrations to capture and analyze metrics on the
performance and behavior of production-phase ML models.

Continuous training
During intense AI investment and expansion periods, new research, datasets,
and improved models emerge daily. Therefore, production ML models must
adapt to incorporating new features and learning from new data.

CircleCI’s support for third-party CI/CD observability platforms means you
can add and monitor new features within CircleCI. But as new training data
generates continuously, you can periodically feed it to the model using
scheduled pipelines. This feature enables you to schedule events that trigger
further training and deployment pipelines — allowing the production ML model
to grow and update continuously.

https://circleci.com/integrations/deployment/
https://circleci.com/blog/deploying-with-approvals/
https://circleci.com/orbs/
https://circleci.com/docs/scheduled-pipelines/

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 8

Automating your ML
workflow with CI/CD

Now that you know how CI/CD can
streamline and enhance your ML workflows,
you’re ready to implement a basic CI/CD
pipeline to build, test, train, deploy, monitor,
and retrain your ML models in production.
You can find all of the code used in this
section in our sample repository.
Since we’re focused on building the CI/CD pipelines and
not the ML model itself, we’ll keep it simple and use the
example ML workflow provided by TensorFlow. This code
builds a model using Keras and example data from MNIST
that identifies images, tests the model, packages it, and
deploys it to TensorFlow Serving. Once the model is in
production, we’ll test that it is functioning properly and set
up a scheduled pipeline to automatically retrain the model
based on fresh production data.

Prerequisites and installation
To build the automated ML pipeline for this guide, you will need the following:

A C I R C L E C I A C C O U NT A N D P R O J E CT

• See the CircleCI quickstart guide to learn how to get up and running with both.

• You can fork the example repository for this tutorial from your own GitHub account
and use it as the basis for your CircleCI project.

A C I R C L E C I S E L F-H O S T E D R U N N E R

• This can be a local machine or set up as part of an auto-scaling deployment for
larger workloads.

• The code in the example repository for this tutorial has been tested on Ubuntu 22.04.

• You can also use CircleCI’s managed cloud compute resources (including GPUs).

A S E R V E R W IT H S S H A C C E S S F O R S TO R I N G YO U R T R A I N E D A N D PA C K A G E D
M O D E L S

• Your models will be uploaded here for storage and, later, publishing to TensorFlow
Serving.

• Your runner should be able to reach this machine on the network.

The ML scripts in this example are all written in Python.

On your runner, you will also need Python, pip, and Python venv. On Ubuntu, run the following
terminal command to install these:

sudo apt install python3 python3-pip python3-venv

https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/
https://github.com/tensorflow/tfx/blob/master/docs/tutorials/serving/rest_simple.ipynb
https://keras.io/
https://github.com/zalandoresearch/fashion-mnist
https://www.tensorflow.org/tfx/guide/serving
https://circleci.com/signup/
https://circleci.com/docs/getting-started/
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/
https://circleci.com/docs/runner-overview/
https://circleci.com/blog/autoscale-self-hosted-runners-aws/
https://circleci.com/execution-environments/gpu/

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 9

Breaking down the ML workflow
The key to automating your ML workflow is to break it down into steps. This allows you to call each step in sequence, or run them in parallel if they do not rely on
each other, and monitor the results. If something fails, you can automatically roll back or retrain and notify the responsible team member so that they can respond.

The TensorFlow example that this tutorial is based on was originally written as a single Python script. It has been broken down into the separate scripts below for
automation.

S T E P 0: P R E PA R E YO U R D ATA

This is a vital step that should be included in
every ML workflow: you must understand your
data before you work on it and make sure that
it is clear of anomalies before it is used.

An ML model is not effective unless you can
verify that it is actually working. If you do
not have some cleaned data that you already
understand to test it against, you have no way
of knowing how accurate it is. Additionally,
make sure that you have a source of reliable
data to use when training or retraining your
models.

S T E P 1: B U I L D

Building an ML model is a multi-step process
that involves collecting, validating, and
understanding your data and then building a
program that can analyze and create insights
from it.

In our example, the build phase imports and
prepares some demo data, ready to train an
existing Keras sequential model in the next
step. In a real-world scenario, you’d supply
your own data.

The Python code for this step is in
ml/1_build.py.

S T E P 2: T R A I N

In this step, carefully prepared, highly accurate
data with known outcomes is fed into the
model so that it can start learning. This uses
the training data from the build phase.

It is best practice to be as verbose as possible
in your scripts. Print out as much useful
information as you can, as anything that is
output to the console will be visible in the logs
in CircleCI’s web interface, allowing for easy
monitoring and debugging.

The Python code for this step is in
ml/2_train.py.

https://keras.io/guides/sequential_model/
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/1_build.py
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/1_build.py
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/2_train.py

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 10

S T E P 3: T E S T

As the training data used in the example
ML workflow is already well understood, we
can tell if the trained model is accurate by
comparing its output with the already known
outcomes.

In our scripts, we do this by comparing the
testing data created in 1_build.py. If the
accuracy is inadequate, an exception is
thrown that halts the CI/CD pipeline and alerts
the owner.

The Python code for this step is in
ml/3_test.py.

S T E P 4: PA C K A G E

The packaging step prepares the trained
model for use in a separate environment —
exporting it in a standard format and making
it portable so that it can be deployed for use
elsewhere. It then uploads it to a package
staging location for future use.

This example uploads the files to a remote
server using SSH. If you are running your ML
pipelines entirely in the cloud and do not want
to grant them access to your internal network
assets, you can use the AWS S3 orb for this
purpose to store your ML artifacts where both
CircleCI’s cloud compute resources and your
own infrastructure can access them.

The Python code for this step is in
ml/4_package.py.

S T E P 5: D E P LOY

Once a deployment environment has been
set up, packaged models can be deployed
and used. This stage involves deploying
your trained and packaged model to your
production ML environment.

In the example repository, the packaged
model is uploaded to the directory TensorFlow
Serving loads its models from.

The Python code for this step is in ml/5_
deploy.py.

https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/3_test.py
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/4_package.py
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/5_deploy.py
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/5_deploy.py

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 11

S T E P 6: T E S T D E P LOY E D M O D E L

Ensuring a successful deployment is
important to prevent downtime, so this
example makes a quick HTTP POST request to
TensorFlow Serving to ensure that it receives
a response.

If the request is unsuccessful, the resulting
error will be thrown by the Python script.

The Python code for this step is in ml/7_test_
deployed_model.py.

S T E P 7: R E T R A I N

ML is not a “one and done” task. Whether you
are analyzing customer data or user behavior
or modeling for scientific purposes, when
new, high-quality data arrives, you will want to
retrain your existing models so that you are
not limited to just your initial data set.

Once your new data has been ingested and
validated, you need to retest retrained models
using known data to ensure they remain
accurate.

While our example won’t be able to load any
fresh data, we can still provide a file and
pipeline for retraining and retesting.

The Python code for retraining and testing the
retrained data is located in the file
6_retrain.py.

Note that in this script, the testing step is designed to
fail! This is so that you can see what a failed job looks
like when this script is added to a job in CircleCI.

https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/7_test_deployed_model.py
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/7_test_deployed_model.py
https://www.tensorflow.org/tfx/guide/tfdv
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/6_retrain.py

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 12

Implementing your build, test, train pipeline
Once you’ve broken down your ML process and created the scripts to run
your workflow (or copied the ones in this example), you can publish it to your
preferred version control system and then import it as a CircleCI project.

The CircleCI configuration file
The CircleCI configuration file is located at the path .circleci/config.yml.
It defines the commands, jobs, steps, and workflows that make up the
automated ML system. Below is an explanation of the features demonstrated
in the example CircleCI configuration, which contains a full working automated
ML system that you can test and build on.

In the configuration file, the check-python command demonstrates how
to run a terminal command in the CircleCI execution environment. If this
command fails, the job and workflow that call it will also fail, sending the error
to CircleCI and notifying the owner:

commands:
 check-python:
 steps:
 - run:
 command: python3 --version
 name: Check Python version

Commands can be reused multiple times within jobs and can also call their
own one-off steps. Below, the install-build job prepares the environment
for running the other ML scripts. It checks out the project code, checks that
Python is installed by using the previously defined check-python command,
and then runs the create-env command to create the required configuration
files. From there, it runs its own set of commands to install Python
dependencies and then runs the first build step in the ML pipeline.

https://circleci.com/product/vcs/
https://circleci.com/product/vcs/
https://circleci.com/docs/create-project/
https://github.com/bgmorton/circleci-ml-pipeline/tree/main/.circleci
https://circleci.com/docs/configuration-reference/#commands
https://circleci.com/docs/configuration-reference/#jobs
https://circleci.com/docs/configuration-reference/#steps
https://circleci.com/docs/configuration-reference/#workflows

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 13

jobs:
install-build:
 # For running on CircleCI’s self-hosted runners - details taken from environment variables
 machine: true
 resource_class: RUNNER_NAMESPACE/RUNNER_RESOURCE_CLASS # Update this to reflect your self-hosted runner resource class details
 steps:
 - checkout # Check out the code in the project directory
 - check-python # Invoke command “check-python”
 - create-env
 - run:
 command: sh ./tools/install.sh
 name: Run script to install dependencies
 - run:
 command: python3 ./ml/1_build.py
 name: Build the model
 - persist_to_workspace:
 # Workspaces let you persist data between jobs - saving time on re-downloading or recreating assets https://circleci.com/
docs/workspaces/
 # Must be an absolute path or relative path from working_directory. This is a directory on the container that is
 # taken to be the root directory of the workspace.
 root: .
 # Must be relative path from root
 paths:
 - venv
 - ml
 - .env
 - tools

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 14

Workflows are made up of jobs that
can run sequentially or concurrently.
The build-deploy workflow runs the
install-build, train, test, and
package jobs and demonstrates how to
use a branch filter to run the workflow
only when commits are made to the main
branch. It also shows how the requires
option can be used to ensure that jobs
execute in order and how multiple job
names can be required by a subsequent
job, allowing for them to be executed
concurrently.

workflows:
 # This workflow does a full build from scratch and deploys the model
 build-deploy:
 jobs:
 - install-build:
 filters:
 branches:
 only:
 - main # Only run the job when the main branch is updated
 - train:
 requires: # Only run the job when the preceding step in the ML process has been
completed so that they are run sequentially
 - install-build
 # To demonstrate how to run two tests concurrently, we’ll run the same test twice under
different names - if either required test fails, the next job that requires them (in this case,
package) will not run - https://circleci.com/docs/workflows/#concurrent-job-execution
 - test:
 name: test-1
 requires:
 - train
 - test:
 name: test-2
 requires:
 - train
 - package:
 requires:
 - test-1
 - test-2

You can either create the file yourself at
the path .circleci/config.yml or
create one in the web console when you
import your project into CircleCI (with
the added advantages of linting and
schema validation). If you are editing your
CircleCI configuration locally, it’s advised
to use the CircleCI command line tools
to validate your configuration before you
commit your changes. VS Code users can
also validate their config directly in their
IDE using the CircleCI VS Code extension.

Take a look at the full working example
CircleCI configuration, including all of the
required commands, jobs, and workflows.

https://support.circleci.com/hc/en-us/articles/115015953868-Filter-workflows-by-branch-
https://circleci.com/docs/configuration-reference/#requires
https://circleci.com/docs/concurrency/
https://circleci.com/docs/concurrency/
https://circleci.com/docs/config-intro/
https://circleci.com/docs/local-cli/
https://circleci.com/docs/how-to-use-the-circleci-local-cli/#validate-a-circleci-config
https://marketplace.visualstudio.com/items?itemName=circleci.circleci

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 15

Creating a CircleCI self-hosted runner
The CircleCI pipeline example provided with this tutorial executes everything
on a CircleCI self-hosted runner. This is often preferred in production, as
it means that your privileged data stays on your network. You will need to
configure your self-hosted runner and provide the details in the .circleci/
config.yaml configuration file.

After you’ve configured your self-hosted runner, you must set the correct
RUNNER_NAMESPACE and RUNNER_RESOURCE_CLASS in all locations in the
.circleci/config.yml file.

machine: true
resource_class: RUNNER_NAMESPACE/RUNNER_RESOURCE_CLASS #
Update this to reflect your self-hosted runner resource
class details

You can also define different execution environments for different jobs, which
is especially useful when using CircleCI’s cloud GPUs for compute-heavy jobs.
In this tutorial, we use a single environment to keep things simple.

DEPLOY_SERVER_HOSTNAME
DEPLOY_SERVER_USERNAME
DEPLOY_SERVER_PASSWORD
DEPLOY_SERVER_PATH

Configuring environment variables in CircleCI
You’ll notice that there are variables used in the configuration file (prefixed
with a $ symbol). You will need to set the following environment variables in
CircleCI, which will be used in these locations to generate the .env file Python
uses to obtain your secrets on the runner when the pipeline is executed:

Secrets like credentials and API keys should never be committed to source
control. Environment variables are injected when a CircleCI pipeline is run so
that you can create configuration files on the fly and avoid committing secrets.

Note that to keep things simple for this example, we’re using SSH password
authentication. In production, you should use certificate authentication and
restrict users so that they can only access the resources they require. For
even better security, consider storing your secrets in a centralized vault and
retrieving them when they are required.

https://circleci.com/execution-environments/runner/
https://circleci.com/docs/runner-overview/#getting-started
https://circleci.com/docs/env-vars/
https://pypi.org/project/python-dotenv/
https://circleci.com/blog/static-credential-management-for-platform-engineers/

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 16

Persisting data between jobs
Jobs can be executed in different environments. As such, data does not
persist between them by default. CircleCI supports data persistence between
jobs using workspaces. In the jobs defined in the example configuration, data
at the paths venv, ml, .env, and tools is persisted to a workspace when it is
modified:

In the example configuration, the .env file is created using the following
CircleCI command:

commands:
 create-env:
 steps:
 - run:
 # Environment variables must be configured in a
CircleCI project or context
 command: |
 cat \<<- EOF > .env
 DEPLOY_SERVER_HOSTNAME=$DEPLOY_SERVER_HOSTNAME
 DEPLOY_SERVER_USERNAME=$DEPLOY_SERVER_USERNAME
 DEPLOY_SERVER_PASSWORD=$DEPLOY_SERVER_PASSWORD
 DEPLOY_SERVER_PATH=$DEPLOY_SERVER_PATH
 EOF
 name: Create .env file containing secrets

See this example of what your generated .env file should look like.

 - persist_to_workspace:
 # Workspaces let you persist data between jobs - saving
time on re-downloading or recreating assets https://
circleci.com/docs/workspaces/
 # Must be an absolute path or relative path from
working_directory. This is a directory on the container that
is
 # taken to be the root directory of the workspace.
 root: .
 # Must be relative path from root
 paths:
 - venv
 - ml
 - .env
 - tools

That data is then reloaded when needed by attaching the job to the existing
workspace:

- attach_workspace:
 # Must be absolute path or relative path from working_
directory
 at: .

https://circleci.com/docs/persist-data/
https://circleci.com/docs/persist-data/
https://circleci.com/docs/workspaces/
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/.env.example

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 17

Confirming your CircleCI workflow has run successfully
When code is committed to a Git branch or a scheduled pipeline is triggered, CircleCI
reads the configuration file and determines whether any workflows should run.

As a CircleCI workflow runs, all console output is shown in the
CircleCI web console. Each step, job, and workflow will report its
status and notify the owner on failure. If an approval is required, the
job will pause until approval is given, and jobs can be rerun from
the point of failure once a problem is corrected. We’ll cover more on
monitoring your CI/CD pipeline later in this guide.

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 18

Adding deployment and retraining to your ML workflow
With the above steps, you have a pipeline that will build, test, and train your
machine learning models with any change to the underlying code or on any
schedule you specify. Next, you will add deployment steps to this workflow and
create a separate retraining workflow using the example ML workflow in the
example repository.

In the example repository, the 4_package.py script uploads the trained and
packaged model to a server via SSH. Below, we will deploy the packaged
model to a TensorFlow Serving server. To keep things simple, we’ll assume
that this server is running in a Docker container on the same host that we
uploaded the packaged models to.

Setting up Tensorflow Serving
A Bash script is supplied for spinning up a Docker container running
TensorFlow Serving for testing:

bash ./tools/install_server.sh

Note that you will first need to install Docker according to its installation
instructions for your platform.

The ML deployment and retraining Python scripts will use the same SSH
credentials that were used to upload the packaged models. These credentials
are stored as CircleCI environment variables and written to the .env
configuration. They will be used to interact with Docker on the deployment
server.

Adding deployment and retraining jobs to the CircleCI
configuration
Below, deploy and test-deployment steps are added to the existing build-
deploy workflow to be run after the package step:

Do not deploy without manual approval - you can inspect
the console output from training and make sure you are happy
to deploy
- deploy:
 requires:
 - package
- test-deployment:
 requires:
 - deploy

https://github.com/CIRCLECI-GWP/circleci-ml-pipeline
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/4_package.py
https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/tfx/serving/docker
https://github.com/bgmorton/circleci-ml-pipeline/blob/main/tools/install_server.sh
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://circleci.com/docs/env-vars/
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/.circleci/config.yml
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/.circleci/config.yml

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 19

A retrain-deploy workflow has also been defined to include the new scripts. In this example, it is triggered according to a schedule defined using cron syntax. To
see this scheduled workflow in action, you will need to create a branch in your Git repository named retrain.

retrain-deploy:
 # Trigger on a schedule or when retrain branch is
updated
 triggers:
 - schedule:
 cron: “0 0 * * *” # Daily
 filters:
 branches:
 only:
 - retrain
 jobs:
 - install-build
 - retrain:
 requires:
 - install-build
 # Do not redeploy without manual approval - you can
inspect the console output from training and make sure you
are happy to deploy the retrained model
 - hold: # A job that will require manual approval in
the CircleCI web application.

 requires:
 - retrain
 type: approval # This key-value pair will set
your workflow to a status of “On Hold”
 - package:
 requires:
 - hold
 - deploy:
 requires:
 - package
 - test-deployment:
 requires:
 - deploy

In the retrain-deploy pipeline, a hold step has been added between the
retrain and package steps. Pipeline execution will pause here until approval
to proceed is given in the CircleCI web console, which is highly useful in ML
pipelines where the accuracy of a retrained model needs to be verified before
it is used.

https://circleci.com/docs/scheduled-pipelines/
https://en.wikipedia.org/wiki/Cron

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 20

The on_fail condition is demonstrated within the retrain job that is called
in this workflow. This allows you to take specific actions when a job fails:

 - run:
 # You could trigger custom notifications here so
that the person responsible for a particular job is notified
via email, Slack, etc.
 name: Run on fail status
 command: |
 echo “I am the result of the above failed job”
 when: on_fail

By ensuring that your ML scripts are verbose, you can make sure that the user
has the information they require to confirm that a model is ready for use. By
throwing exceptions when retraining conditions are not met, pipelines can be
halted entirely so that problems can be rectified before they reach production.

Scheduling, branches, and manual pipeline execution
As shown in the code above, the retrain-deploy pipeline is run according
to a user-defined schedule. This differs from the build-deploy pipeline,
which only runs when a specified branch is updated.

You can also manually trigger a pipeline at any time from the CircleCI web
console, rerun failed jobs, or trigger a pipeline to run using the CircleCI API.
Using the CircleCI API, you can set up your data ingestion tools to trigger a
CircleCI pipeline externally when new data has arrived.

https://support.circleci.com/hc/en-us/articles/360043638052-Conditional-steps-in-jobs-and-conditional-workflows
https://circleci.com/docs/api/v2/
https://support.circleci.com/hc/en-us/articles/360050351292-How-to-Trigger-a-Workflow-via-CircleCI-API-v2
https://support.circleci.com/hc/en-us/articles/360050351292-How-to-Trigger-a-Workflow-via-CircleCI-API-v2

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 21

Using CircleCI to monitor your ML CI/CD pipelines
Once your CircleCI configuration has been committed to your Git repository,
CircleCI will execute the workflows defined in it based on the defined filters
and schedules. You will be able to see the output of tasks undertaken by
CircleCI in the web console:

Jobs can be held for approval, and if a job fails, you can rapidly respond and
confirm the issue in the CircleCI UI by rerunning only the failed parts of your
workflow.

As your ML requirements and workflows expand, you can offload the
increasing number of ML management and monitoring tasks to scripts
triggered by CircleCI pipelines. This way, your workload will be significantly
reduced, automated tasks will run and complete as data arrives or on a
schedule, and you’ll only have to take action when there’s a problem.

https://circleci.com/docs/workflows/#rerunning-a-workflows-failed-jobs
https://circleci.com/docs/workflows/#rerunning-a-workflows-failed-jobs

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 22

C U S TO M I Z I N G N OT I F I C AT I O N S

By default, you will receive notifications on job failures and required
approvals to your default CircleCI email address. Additionally, you can
configure other notifications behavior, including adding other team members
to receive notifications on your pipelines, setting up web notifications, and
connecting your CircleCI pipeline to Slack or IRC.

By customizing your notifications, you can make sure that the right person
is notified to fix a failed job and that your ML system stays accurate and
available.

R E S P O N D I N G TO P R O B L E M S I N P R O D U CT I O N

Once your model is deployed, monitoring and logging will be handled by your
ML platform. You can see how this is configured in TensorFlow in this guide.

Using the CircleCI API, you can configure your production monitoring tools to
trigger CircleCI pipelines to run so that you can roll back, retrain, or redeploy
models to rapidly respond to incidents.

Automation significantly reduces the amount
of time your team spends operating and
monitoring your ML systems, freeing you to
spend more time building and less time on
administrative overhead.

https://circleci.com/docs/notifications/
https://www.tensorflow.org/tfx/serving/serving_config#monitoring_configuration

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 23

Running your CI/CD workflows in the cloud using CircleCI’s
managed cloud compute resources
This example used a self-hosted runner to execute commands in a local
environment. This is advantageous when dealing with privileged data that you
do not want to leave your network but requires that you have your own local
machines for the task.

You can run ML tasks (or any CI/CD task) directly on CircleCI’s managed
compute resources by specifying a Docker, Linux VM (virtual machine), macOS,
Windows, GPU, or Arm execution environment in your CircleCI configuration.
You can also use your own Docker images with authenticated pulls. Hosted
environments are run on CircleCI’s managed cloud compute, so you don’t need
your own hardware — your workflows will be run on demand with automatically
provisioned compute resources.

For example, to execute your jobs in a pre-built Python Docker container, you
would replace the machine and resource_class options in the job with the
following configuration code:

docker:
 - image: cimg/python:3.11.4

When using cloud compute, you will need to provide the execution environment
access to your data. This can be done by using SSH tunneling, configuring a
VPN, or using CircleCi’s orbs to access resources stored on public clouds such
as AWS, Google Cloud Platform, or Azure. One common use case is to share
ML models and data in an AWS S3 bucket, which can be authenticated and
accessed by on-site infrastructure and CircleCI using OIDC.

Workspaces can also be used to transfer local data to cloud workloads. With
minimal additional configuration, CircleCI workflows can run jobs that are
configured to run on local runners or CircleCI’s managed cloud compute, with
data persisted between them.

https://circleci.com/docs/private-images/
https://support.circleci.com/hc/en-us/articles/360049397051-How-To-Set-Up-a-VPN-Connection-During-Builds
https://circleci.com/orbs/
https://circleci.com/developer/orbs/orb/circleci/aws-s3
https://circleci.com/blog/role-based-credential-management-with-oidc/

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 24

Using GPU resources for ML tasks in the cloud and locally
Along with specifying the CPU and memory available to your CircleCI cloud
compute using resource classes, you can also run your ML tasks in cloud-
hosted GPU execution environments. Training and retraining ML models is a
compute-intensive task. Leveraging GPU processing power will greatly speed
up the process, allowing you to train faster or train and test multiple datasets
in parallel.

To use GPU resources in CircleCI, specify a GPU-enabled machine image in
your configuration:

machine:
 image: ubuntu-2004-cuda-11.4:202110-01

If you have large data processing requirements that make the cost of using
cloud resources prohibitive, you can use your own self-hosted runners with
your own physical GPUs.

Once you have an environment with GPU resources available, and if your
ML platform supports it, you can configure your ML package to utilize them.
See this guide on how to do this with TensorFlow. GPUs make short work of
compute-intensive applications and are therefore extremely well suited for
processing ML models.

By combining local runners with cloud GPU resources and CircleCI’s
workspace functionality, you can access and prepare your ML training
data on-site and then use it in the cloud without having to set up complex
infrastructure for granting cloud resources access to your internal data stores.
Conversely, if you are concerned about your cloud-compute costs, you can
move data from the cloud on-site and execute your ML tasks on local GPUs
using CircleCI’s self-hosted runners.

https://circleci.com/docs/using-gpu/
https://www.tensorflow.org/install/gpu_plugins
https://hsf-training.github.io/hsf-training-ml-gpu-webpage/aio/index.html
https://circleci.com/docs/workspaces/

CircleCI | Automating and Scaling Machine Learning Workflows with CI/CD 25

Conclusion If you followed the steps in this guide, you now have a fully functional MLOps pipeline capable
of continuously building, testing, training, deploying, and retraining your machine learning
models. This frees your ML experts from manually running pipelines, testing data, and deploying
vetted models, allowing them to focus on building more accurate models and features.

This MLOps pipeline will also enable your organization to efficiently track model performance
and update models as needed to ensure that the models are performing optimally for the
given data. By leveraging automation and tracking performance, your teams can improve the
development cycle of ML models, reducing the amount of time it takes for models to go from
development to production. Ultimately, by utilizing this MLOps pipeline, your organization will be
able to make more accurate decisions faster, with higher confidence.

CircleCI can do much more than we can demonstrate in the space of this guide. It provides a
flexible, scalable platform for accomplishing fully bespoke ML workflows to suit any use case.
You can get started today with a free account, or reach out to our team for personalized help
finding the right plan and setting up customizable CI/CD pipelines tailored to your specific ML
project needs.

https://circleci.com/signup/
https://circleci.com/contact/

