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Machine learning (ML) is becoming an essential technology for many organizations, 
driving innovation and improving operational efficiencies. However, bringing ML 
models into production environments poses a range of challenges that require careful 
consideration and strategic problem-solving. 

To streamline the process, continuous integration and continuous delivery (CI/CD) 
offers ML teams the ability to automate various stages of ML project development and 
deployment. In this guide, we’ll explore the benefits of using CI/CD for ML projects and 
how it can help your organization overcome common ML challenges. Then, we’ll walk 
through the process of setting up your own CI/CD pipeline to build, test, train, deploy, 
and retrain your models for faster, more efficient ML workflows.
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What is CI/CD, and what can it do for your ML models and 
workflows?
CI/CD pipelines are an essential tool for any software development team, but 
their importance and utility become even more pronounced in the context of 
machine learning (ML) projects. A CI/CD pipeline is a framework that enables 
developers to integrate their code changes more frequently and reliably into 
the codebase. It automatically executes a series of steps every time a code 
change occurs, beginning with the integration of the new code, followed by 
the building and testing of the whole system to ensure there are no breaking 
changes.

For ML development teams, the use of CI/CD pipelines can significantly 
streamline their workflows. By automating the testing and validation of 
ML models, teams can catch and address issues quickly, speeding up the 
development process and reducing the risk of errors in the final product. 
Furthermore, CI/CD facilitates consistent and repeatable processes, making 
it easier to scale ML operations. With each change to the model or the 
data, the pipeline can retrain the model, validate its performance, and if the 
performance metrics meet the acceptance criteria, deploy the model to the 
production environment.

Effectively implementing a CI/CD pipeline paves the way for MLOps (machine 
learning operations) – a practice for collaboration and communication 
between data scientists and operations professionals to help manage 
production ML lifecycle. MLOps seeks to increase automation and improve 
the quality of production ML while also focusing on business and regulatory 
requirements. With CI/CD, teams can manage frequent, incremental updates 
to models in a manageable and predictable way, ultimately leading to MLOps 
that are quick, efficient, and robust.

https://circleci.com/blog/what-is-a-ci-cd-pipeline/
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Solving the top challenges of ML Model Development with CI/CD

ML model development is a complex process, and 
organizations often face a number of challenges that 
can affect the success of their projects. CI/CD’s ability to 
automate the different stages of ML model development 
helps address some of these challenges. Let’s take a look 
at some of the most common ones:

Scalability and compute resource management
One of the main challenges that ML developers face is the intensive compute 
requirements for building and training large-scale ML models. Indeed, training 
large language models (LLMs) like ChatGPT typically consumes billions of 
input words and costs millions of dollars in computational resources.

Because of the scale needed to train and develop these models, analysts have 
proposed cloud computing to meet the computational demand. However, 
using GPU or CPU resources from popular cloud services — such as Amazon 
Web Services (AWS) and Google Cloud Platform (GCP) — for extended training 
tasks is costly. Moreover, cloud providers’ “unlimited” scaling offerings can 
lead to runaway resource usage and associated costs.

CircleCI’s features enable scaling while controlling and monitoring costs. For 
training models in the cloud, CircleCI offers several tiers of GPU resource 
classes with transparent pricing models. Alternatively, you can use self-hosted 
runners to run automated workflows on your own infrastructure for more 
flexibility. With this extra versatility, you can configure self-hosted runners to 
scale automatically or execute jobs concurrently.

https://towardsdatascience.com/behind-the-millions-estimating-the-scale-of-large-language-models-97bd7287fb6b
https://circleci.com/execution-environments/gpu/
https://circleci.com/docs/runner-overview/
https://circleci.com/docs/runner-overview/
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Reproducibility and environment consistency
Another critical aspect of managing ML model deployment is maintaining 
consistency and reproducibility in the build environment. These properties 
prevent unexpected errors when restarting CI/CD jobs or migrating from one 
build platform to another. Consequently, you can avoid costly build errors 
in ML model development, which often features long-running jobs that are 
difficult to interrupt.

Fortunately, you can use containerization to isolate deployment jobs from the 
surrounding environment to ensure consistency. Meanwhile, deployment using 
infrastructure as code (IaC) helps improve the build system’s reproducibility by 
explicitly defining the environment details and resources required to execute 
a task. As a result, the build is less dependent on platform-specific settings — 
you can reproduce and audit it easily.

For these reasons, CircleCI provides tools like Docker executor and container 
runner for containerized CI/CD environments, offering a platform that supports 
YAML-based IaC configuration.

Testing and validation
Testing is crucial in developing any software project and especially for ML-
powered programs. By nature of their complexity and training, ML models tend 
to feature implementation that is opaque to the user, making it near-impossible 
to determine a model’s correctness by inspection. Therefore, comprehensive 
testing is essential for proper software functionality.

CircleCI excels at integrating testing into the development process. Support 
for automated testing makes it easy to ensure code performs as expected 
before it goes to production. You can customize tests on the CircleCI platform 
using one of many third-party integrations called orbs. You can then monitor 
them via SSH debugging or the Insights dashboard.

Security and compliance
Development teams must ensure that software is secure and compliant with 
consumer protection laws. This is particularly relevant for ML development, 
which often involves processing large amounts of user data during training. 
A vulnerability in the data pipeline or failure to sanitize the data could 
allow attackers to access sensitive user information. Therefore, security 
is a principal consideration at each stage of ML model development and 
deployment.

CircleCI provides several CI/CD features to improve the security and 
compliance of your application. You can control access to the pipeline using 
a role-based credential system with OpenID Connect (OIDC) authentication 
tokens, enabling fine-grained management of user access to each step within 
the pipeline. Additionally, CircleCI logs important security events and stores 
them in audit logs, which you can review later to understand the system’s 
security better.

https://circleci.com/docker/
https://circleci.com/docs/container-runner/
https://circleci.com/docs/container-runner/
https://circleci.com/orbs/
https://circleci.com/docs/ssh-access-jobs/
https://circleci.com/docs/insights/
https://circleci.com/blog/automate-software-delivery-compliance/
https://circleci.com/blog/access-control-cicd/
https://circleci.com/blog/role-based-credential-management-with-oidc/
https://circleci.com/docs/audit-logs/
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Deployment automation
New versions of ML models are often developed rapidly, especially during 
periods of heightened interest in AI. This makes it challenging to manage 
frequent updates to ML systems with several versions in development or 
production. To ensure a consistent user experience, you need an easy way to 
push new updates to production and determine which versions are currently in 
use.

Fortunately, you can deploy code to AWS, GCP, or any other targeted 
platform continuously and automatically via CircleCI orbs. Moreover, these 
deployments are configurable through IaC to ensure process clarity and 
reproducibility. Users can add a manual approval gate at any point in the 
deployment pipeline to check that it proceeds successfully.

Monitoring and performance analysis
After deploying an ML model, you must set up production monitoring and 
performance analysis software. Due to the size and complexity of modern ML 
models such as LLMs, even a comprehensive test suite may fail to ensure their 
validity. The only way to determine that a model is performing as expected is 
to observe its real-world performance by collecting and aggregating metrics 
from the production environment.

With CircleCI, it is easy to integrate monitoring into the post-deployment 
process. CircleCI orbs offer options to incorporate monitoring and data 
analysis tools like Datadog, New Relic, and Splunk into the CI/CD pipeline. 
You can configure these integrations to capture and analyze metrics on the 
performance and behavior of production-phase ML models.

Continuous training
During intense AI investment and expansion periods, new research, datasets, 
and improved models emerge daily. Therefore, production ML models must 
adapt to incorporating new features and learning from new data.

CircleCI’s support for third-party CI/CD observability platforms means you 
can add and monitor new features within CircleCI. But as new training data 
generates continuously, you can periodically feed it to the model using 
scheduled pipelines. This feature enables you to schedule events that trigger 
further training and deployment pipelines — allowing the production ML model 
to grow and update continuously.

https://circleci.com/integrations/deployment/
https://circleci.com/blog/deploying-with-approvals/
https://circleci.com/orbs/
https://circleci.com/docs/scheduled-pipelines/
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Automating your ML 
workflow with CI/CD

Now that you know how CI/CD can 
streamline and enhance your ML workflows, 
you’re ready to implement a basic CI/CD 
pipeline to build, test, train, deploy, monitor, 
and retrain your ML models in production. 
You can find all of the code used in this 
section in our sample repository.
Since we’re focused on building the CI/CD pipelines and 
not the ML model itself, we’ll keep it simple and use the 
example ML workflow provided by TensorFlow. This code 
builds a model using Keras and example data from MNIST 
that identifies images, tests the model, packages it, and 
deploys it to TensorFlow Serving. Once the model is in 
production, we’ll test that it is functioning properly and set 
up a scheduled pipeline to automatically retrain the model 
based on fresh production data.

Prerequisites and installation
To build the automated ML pipeline for this guide, you will need the following:

A C I R C L E C I  A C C O U NT A N D P R O J E CT

•  See the CircleCI quickstart guide to learn how to get up and running with both.

•  You can fork the example repository for this tutorial from your own GitHub account 
and use it as the basis for your CircleCI project.

A C I R C L E C I  S E L F-H O S T E D R U N N E R

•  This can be a local machine or set up as part of an auto-scaling deployment for 
larger workloads.

•  The code in the example repository for this tutorial has been tested on Ubuntu 22.04.

•  You can also use CircleCI’s managed cloud compute resources (including GPUs).

A S E R V E R W IT H S S H A C C E S S F O R S TO R I N G YO U R T R A I N E D A N D PA C K A G E D 
M O D E L S

•  Your models will be uploaded here for storage and, later, publishing to TensorFlow 
Serving.

•  Your runner should be able to reach this machine on the network.

The ML scripts in this example are all written in Python.

On your runner, you will also need Python, pip, and Python venv. On Ubuntu, run the following 
terminal command to install these:

sudo apt install python3 python3-pip python3-venv

https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/
https://github.com/tensorflow/tfx/blob/master/docs/tutorials/serving/rest_simple.ipynb
https://keras.io/
https://github.com/zalandoresearch/fashion-mnist
https://www.tensorflow.org/tfx/guide/serving
https://circleci.com/signup/
https://circleci.com/docs/getting-started/
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/
https://circleci.com/docs/runner-overview/
https://circleci.com/blog/autoscale-self-hosted-runners-aws/
https://circleci.com/execution-environments/gpu/
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Breaking down the ML workflow
The key to automating your ML workflow is to break it down into steps. This allows you to call each step in sequence, or run them in parallel if they do not rely on 
each other, and monitor the results. If something fails, you can automatically roll back or retrain and notify the responsible team member so that they can respond.

The TensorFlow example that this tutorial is based on was originally written as a single Python script. It has been broken down into the separate scripts below for 
automation.

S T E P 0:  P R E PA R E YO U R D ATA

This is a vital step that should be included in 
every ML workflow: you must understand your 
data before you work on it and make sure that 
it is clear of anomalies before it is used.

An ML model is not effective unless you can 
verify that it is actually working. If you do 
not have some cleaned data that you already 
understand to test it against, you have no way 
of knowing how accurate it is. Additionally, 
make sure that you have a source of reliable 
data to use when training or retraining your 
models.

S T E P 1:  B U I L D

Building an ML model is a multi-step process 
that involves collecting, validating, and 
understanding your data and then building a 
program that can analyze and create insights 
from it.

In our example, the build phase imports and 
prepares some demo data, ready to train an 
existing Keras sequential model in the next 
step. In a real-world scenario, you’d supply 
your own data.

The Python code for this step is in  
ml/1_build.py.

S T E P 2:  T R A I N

In this step, carefully prepared, highly accurate 
data with known outcomes is fed into the 
model so that it can start learning. This uses 
the training data from the build phase.

It is best practice to be as verbose as possible 
in your scripts. Print out as much useful 
information as you can, as anything that is 
output to the console will be visible in the logs 
in CircleCI’s web interface, allowing for easy 
monitoring and debugging.

The Python code for this step is in  
ml/2_train.py.

https://keras.io/guides/sequential_model/
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/1_build.py
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/1_build.py
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/2_train.py
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S T E P 3:  T E S T

As the training data used in the example 
ML workflow is already well understood, we 
can tell if the trained model is accurate by 
comparing its output with the already known 
outcomes.

In our scripts, we do this by comparing the 
testing data created in 1_build.py. If the 
accuracy is inadequate, an exception is 
thrown that halts the CI/CD pipeline and alerts 
the owner.

The Python code for this step is in  
ml/3_test.py.

S T E P 4:  PA C K A G E

The packaging step prepares the trained 
model for use in a separate environment — 
exporting it in a standard format and making 
it portable so that it can be deployed for use 
elsewhere. It then uploads it to a package 
staging location for future use.

This example uploads the files to a remote 
server using SSH. If you are running your ML 
pipelines entirely in the cloud and do not want 
to grant them access to your internal network 
assets, you can use the AWS S3 orb for this 
purpose to store your ML artifacts where both 
CircleCI’s cloud compute resources and your 
own infrastructure can access them.

The Python code for this step is in  
ml/4_package.py.

S T E P 5:  D E P LOY

Once a deployment environment has been 
set up, packaged models can be deployed 
and used. This stage involves deploying 
your trained and packaged model to your 
production ML environment.

In the example repository, the packaged 
model is uploaded to the directory TensorFlow 
Serving loads its models from. 

The Python code for this step is in ml/5_
deploy.py.

https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/3_test.py
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/4_package.py
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/5_deploy.py
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/5_deploy.py
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S T E P 6:  T E S T D E P LOY E D M O D E L

Ensuring a successful deployment is 
important to prevent downtime, so this 
example makes a quick HTTP POST request to 
TensorFlow Serving to ensure that it receives 
a response.

If the request is unsuccessful, the resulting 
error will be thrown by the Python script.

The Python code for this step is in ml/7_test_
deployed_model.py.

S T E P 7:  R E T R A I N

ML is not a “one and done” task. Whether you 
are analyzing customer data or user behavior 
or modeling for scientific purposes, when 
new, high-quality data arrives, you will want to 
retrain your existing models so that you are 
not limited to just your initial data set.

Once your new data has been ingested and 
validated, you need to retest retrained models 
using known data to ensure they remain 
accurate.

While our example won’t be able to load any 
fresh data, we can still provide a file and 
pipeline for retraining and retesting.

The Python code for retraining and testing the 
retrained data is located in the file  
6_retrain.py.

Note that in this script, the testing step is designed to 
fail! This is so that you can see what a failed job looks 
like when this script is added to a job in CircleCI.

https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/7_test_deployed_model.py
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/7_test_deployed_model.py
https://www.tensorflow.org/tfx/guide/tfdv
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/6_retrain.py
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Implementing your build, test, train pipeline
Once you’ve broken down your ML process and created the scripts to run 
your workflow (or copied the ones in this example), you can publish it to your 
preferred version control system and then import it as a CircleCI project.

The CircleCI configuration file
The CircleCI configuration file is located at the path .circleci/config.yml. 
It defines the commands, jobs, steps, and workflows that make up the 
automated ML system. Below is an explanation of the features demonstrated 
in the example CircleCI configuration, which contains a full working automated 
ML system that you can test and build on.

In the configuration file, the check-python command demonstrates how 
to run a terminal command in the CircleCI execution environment. If this 
command fails, the job and workflow that call it will also fail, sending the error 
to CircleCI and notifying the owner:

commands:
    check-python:
        steps:
        - run:
            command: python3 --version
            name: Check Python version

Commands can be reused multiple times within jobs and can also call their 
own one-off steps. Below, the install-build job prepares the environment 
for running the other ML scripts. It checks out the project code, checks that 
Python is installed by using the previously defined check-python command, 
and then runs the create-env command to create the required configuration 
files. From there, it runs its own set of commands to install Python 
dependencies and then runs the first build step in the ML pipeline.

https://circleci.com/product/vcs/
https://circleci.com/product/vcs/
https://circleci.com/docs/create-project/
https://github.com/bgmorton/circleci-ml-pipeline/tree/main/.circleci
https://circleci.com/docs/configuration-reference/#commands
https://circleci.com/docs/configuration-reference/#jobs
https://circleci.com/docs/configuration-reference/#steps
https://circleci.com/docs/configuration-reference/#workflows
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jobs:
install-build:
    # For running on CircleCI’s self-hosted runners - details taken from environment variables
    machine: true
    resource_class: RUNNER_NAMESPACE/RUNNER_RESOURCE_CLASS # Update this to reflect your self-hosted runner resource class details
    steps:
    - checkout # Check out the code in the project directory
    - check-python # Invoke command “check-python”
    - create-env     
    - run: 
        command: sh ./tools/install.sh
        name: Run script to install dependencies
    - run:
        command: python3 ./ml/1_build.py
        name: Build the model
    - persist_to_workspace:
        # Workspaces let you persist data between jobs - saving time on re-downloading or recreating assets https://circleci.com/
docs/workspaces/
        # Must be an absolute path or relative path from working_directory. This is a directory on the container that is
        # taken to be the root directory of the workspace.
        root: .
        # Must be relative path from root
        paths:
            - venv
            - ml
            - .env
            - tools
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Workflows are made up of jobs that 
can run sequentially or concurrently. 
The build-deploy workflow runs the 
install-build, train, test, and 
package jobs and demonstrates how to 
use a branch filter to run the workflow 
only when commits are made to the main 
branch. It also shows how the requires 
option can be used to ensure that jobs 
execute in order and how multiple job 
names can be required by a subsequent 
job, allowing for them to be executed 
concurrently.

workflows:
    # This workflow does a full build from scratch and deploys the model
    build-deploy:
        jobs:
        - install-build:
            filters:
                branches:
                only:
                    - main # Only run the job when the main branch is updated
        - train:
            requires: # Only run the job when the preceding step in the ML process has been 
completed so that they are run sequentially
                - install-build
        # To demonstrate how to run two tests concurrently, we’ll run the same test twice under 
different names - if either required test fails, the next job that requires them (in this case, 
package) will not run - https://circleci.com/docs/workflows/#concurrent-job-execution
        - test:
            name: test-1
            requires: 
                - train
        - test:
            name: test-2
            requires: 
                - train
        - package:
            requires:
                - test-1
                - test-2

You can either create the file yourself at 
the path .circleci/config.yml or 
create one in the web console when you 
import your project into CircleCI (with 
the added advantages of linting and 
schema validation). If you are editing your 
CircleCI configuration locally, it’s advised 
to use the CircleCI command line tools 
to validate your configuration before you 
commit your changes. VS Code users can 
also validate their config directly in their 
IDE using the CircleCI VS Code extension.

Take a look at the full working example 
CircleCI configuration, including all of the 
required commands, jobs, and workflows.

https://support.circleci.com/hc/en-us/articles/115015953868-Filter-workflows-by-branch-
https://circleci.com/docs/configuration-reference/#requires
https://circleci.com/docs/concurrency/
https://circleci.com/docs/concurrency/
https://circleci.com/docs/config-intro/
https://circleci.com/docs/local-cli/
https://circleci.com/docs/how-to-use-the-circleci-local-cli/#validate-a-circleci-config
https://marketplace.visualstudio.com/items?itemName=circleci.circleci


CircleCI   |   Automating and Scaling Machine Learning Workflows with CI/CD 15

Creating a CircleCI self-hosted runner
The CircleCI pipeline example provided with this tutorial executes everything 
on a CircleCI self-hosted runner. This is often preferred in production, as 
it means that your privileged data stays on your network. You will need to 
configure your self-hosted runner and provide the details in the .circleci/
config.yaml configuration file.

After you’ve configured your self-hosted runner, you must set the correct 
RUNNER_NAMESPACE and RUNNER_RESOURCE_CLASS in all locations in the 
.circleci/config.yml file.

machine: true
resource_class: RUNNER_NAMESPACE/RUNNER_RESOURCE_CLASS # 
Update this to reflect your self-hosted runner resource 
class details

You can also define different execution environments for different jobs, which 
is especially useful when using CircleCI’s cloud GPUs for compute-heavy jobs. 
In this tutorial, we use a single environment to keep things simple.

DEPLOY_SERVER_HOSTNAME
DEPLOY_SERVER_USERNAME
DEPLOY_SERVER_PASSWORD
DEPLOY_SERVER_PATH

Configuring environment variables in CircleCI
You’ll notice that there are variables used in the configuration file (prefixed 
with a $ symbol). You will need to set the following environment variables in 
CircleCI, which will be used in these locations to generate the .env file Python 
uses to obtain your secrets on the runner when the pipeline is executed:

Secrets like credentials and API keys should never be committed to source 
control. Environment variables are injected when a CircleCI pipeline is run so 
that you can create configuration files on the fly and avoid committing secrets.

Note that to keep things simple for this example, we’re using SSH password 
authentication. In production, you should use certificate authentication and 
restrict users so that they can only access the resources they require. For 
even better security, consider storing your secrets in a centralized vault and 
retrieving them when they are required.

https://circleci.com/execution-environments/runner/
https://circleci.com/docs/runner-overview/#getting-started
https://circleci.com/docs/env-vars/
https://pypi.org/project/python-dotenv/
https://circleci.com/blog/static-credential-management-for-platform-engineers/
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Persisting data between jobs
Jobs can be executed in different environments. As such, data does not 
persist between them by default. CircleCI supports data persistence between 
jobs using workspaces. In the jobs defined in the example configuration, data 
at the paths venv, ml, .env, and tools is persisted to a workspace when it is 
modified:

In the example configuration, the .env file is created using the following 
CircleCI command:

commands:
  create-env:
      steps:
      - run:
          # Environment variables must be configured in a 
CircleCI project or context
          command: |
              cat \<<- EOF > .env
              DEPLOY_SERVER_HOSTNAME=$DEPLOY_SERVER_HOSTNAME
              DEPLOY_SERVER_USERNAME=$DEPLOY_SERVER_USERNAME
              DEPLOY_SERVER_PASSWORD=$DEPLOY_SERVER_PASSWORD
              DEPLOY_SERVER_PATH=$DEPLOY_SERVER_PATH
              EOF
          name: Create .env file containing secrets

See this example of what your generated .env file should look like.

  - persist_to_workspace:
    # Workspaces let you persist data between jobs - saving 
time on re-downloading or recreating assets https://
circleci.com/docs/workspaces/
    # Must be an absolute path or relative path from 
working_directory. This is a directory on the container that 
is
    # taken to be the root directory of the workspace.
    root: .
    # Must be relative path from root
    paths:
        - venv
        - ml
        - .env
        - tools

That data is then reloaded when needed by attaching the job to the existing 
workspace:

- attach_workspace:
    # Must be absolute path or relative path from working_
directory
    at: .

https://circleci.com/docs/persist-data/
https://circleci.com/docs/persist-data/
https://circleci.com/docs/workspaces/
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/.env.example
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Confirming your CircleCI workflow has run successfully
When code is committed to a Git branch or a scheduled pipeline is triggered, CircleCI 
reads the configuration file and determines whether any workflows should run.

As a CircleCI workflow runs, all console output is shown in the 
CircleCI web console. Each step, job, and workflow will report its 
status and notify the owner on failure. If an approval is required, the 
job will pause until approval is given, and jobs can be rerun from 
the point of failure once a problem is corrected. We’ll cover more on 
monitoring your CI/CD pipeline later in this guide.
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Adding deployment and retraining to your ML workflow
With the above steps, you have a pipeline that will build, test, and train your 
machine learning models with any change to the underlying code or on any 
schedule you specify. Next, you will add deployment steps to this workflow and 
create a separate retraining workflow using the example ML workflow in the 
example repository.

In the example repository, the 4_package.py script uploads the trained and 
packaged model to a server via SSH. Below, we will deploy the packaged 
model to a TensorFlow Serving server. To keep things simple, we’ll assume 
that this server is running in a Docker container on the same host that we 
uploaded the packaged models to.

Setting up Tensorflow Serving
A Bash script is supplied for spinning up a Docker container running 
TensorFlow Serving for testing:

bash ./tools/install_server.sh

Note that you will first need to install Docker according to its installation 
instructions for your platform.

The ML deployment and retraining Python scripts will use the same SSH 
credentials that were used to upload the packaged models. These credentials 
are stored as CircleCI environment variables and written to the .env 
configuration. They will be used to interact with Docker on the deployment 
server.

Adding deployment and retraining jobs to the CircleCI 
configuration
Below, deploy and test-deployment steps are added to the existing build-
deploy workflow to be run after the package step:

# Do not deploy without manual approval - you can inspect 
the console output from training and make sure you are happy 
to deploy
- deploy:
    requires: 
        - package 
- test-deployment:
    requires:
        - deploy

https://github.com/CIRCLECI-GWP/circleci-ml-pipeline
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/ml/4_package.py
https://www.tensorflow.org/tfx/guide/serving
https://www.tensorflow.org/tfx/serving/docker
https://github.com/bgmorton/circleci-ml-pipeline/blob/main/tools/install_server.sh
https://docs.docker.com/engine/install/
https://docs.docker.com/engine/install/
https://circleci.com/docs/env-vars/
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/.circleci/config.yml
https://github.com/CIRCLECI-GWP/circleci-ml-pipeline/blob/main/.circleci/config.yml
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A retrain-deploy workflow has also been defined to include the new scripts. In this example, it is triggered according to a schedule defined using cron syntax. To 
see this scheduled workflow in action, you will need to create a branch in your Git repository named retrain.

retrain-deploy:
    # Trigger on a schedule or when retrain branch is 
updated
    triggers:
        - schedule:
            cron: “0 0 * * *” # Daily
            filters:
            branches:
                only:
                - retrain
    jobs:
        - install-build
        - retrain:
            requires:
            - install-build
        # Do not redeploy without manual approval - you can 
inspect the console output from training and make sure you 
are happy to deploy the retrained model
        - hold: # A job that will require manual approval in 
the CircleCI web application.

            requires: 
            - retrain
            type: approval # This key-value pair will set 
your workflow to a status of “On Hold”
        - package:
            requires:
            - hold
        - deploy:
            requires:
            - package
        - test-deployment:
            requires:
            - deploy

In the retrain-deploy pipeline, a hold step has been added between the 
retrain and package steps. Pipeline execution will pause here until approval 
to proceed is given in the CircleCI web console, which is highly useful in ML 
pipelines where the accuracy of a retrained model needs to be verified before 
it is used.

https://circleci.com/docs/scheduled-pipelines/
https://en.wikipedia.org/wiki/Cron
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The on_fail condition is demonstrated within the retrain job that is called 
in this workflow. This allows you to take specific actions when a job fails:

   - run:
          # You could trigger custom notifications here so 
that the person responsible for a particular job is notified 
via email, Slack, etc.
          name: Run on fail status
          command: |
              echo “I am the result of the above failed job” 
          when: on_fail

By ensuring that your ML scripts are verbose, you can make sure that the user 
has the information they require to confirm that a model is ready for use. By 
throwing exceptions when retraining conditions are not met, pipelines can be 
halted entirely so that problems can be rectified before they reach production.

Scheduling, branches, and manual pipeline execution
As shown in the code above, the retrain-deploy pipeline is run according 
to a user-defined schedule. This differs from the build-deploy pipeline, 
which only runs when a specified branch is updated.

You can also manually trigger a pipeline at any time from the CircleCI web 
console, rerun failed jobs, or trigger a pipeline to run using the CircleCI API. 
Using the CircleCI API, you can set up your data ingestion tools to trigger a 
CircleCI pipeline externally when new data has arrived.

https://support.circleci.com/hc/en-us/articles/360043638052-Conditional-steps-in-jobs-and-conditional-workflows
https://circleci.com/docs/api/v2/
https://support.circleci.com/hc/en-us/articles/360050351292-How-to-Trigger-a-Workflow-via-CircleCI-API-v2
https://support.circleci.com/hc/en-us/articles/360050351292-How-to-Trigger-a-Workflow-via-CircleCI-API-v2
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Using CircleCI to monitor your ML CI/CD pipelines
Once your CircleCI configuration has been committed to your Git repository, 
CircleCI will execute the workflows defined in it based on the defined filters 
and schedules. You will be able to see the output of tasks undertaken by 
CircleCI in the web console:

Jobs can be held for approval, and if a job fails, you can rapidly respond and 
confirm the issue in the CircleCI UI by rerunning only the failed parts of your 
workflow.

As your ML requirements and workflows expand, you can offload the 
increasing number of ML management and monitoring tasks to scripts 
triggered by CircleCI pipelines. This way, your workload will be significantly 
reduced, automated tasks will run and complete as data arrives or on a 
schedule, and you’ll only have to take action when there’s a problem. 

https://circleci.com/docs/workflows/#rerunning-a-workflows-failed-jobs
https://circleci.com/docs/workflows/#rerunning-a-workflows-failed-jobs
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C U S TO M I Z I N G N OT I F I C AT I O N S

By default, you will receive notifications on job failures and required 
approvals to your default CircleCI email address. Additionally, you can 
configure other notifications behavior, including adding other team members 
to receive notifications on your pipelines, setting up web notifications, and 
connecting your CircleCI pipeline to Slack or IRC.

By customizing your notifications, you can make sure that the right person 
is notified to fix a failed job and that your ML system stays accurate and 
available.

R E S P O N D I N G TO P R O B L E M S I N P R O D U CT I O N

Once your model is deployed, monitoring and logging will be handled by your 
ML platform. You can see how this is configured in TensorFlow in this guide.

Using the CircleCI API, you can configure your production monitoring tools to 
trigger CircleCI pipelines to run so that you can roll back, retrain, or redeploy 
models to rapidly respond to incidents.

Automation significantly reduces the amount 
of time your team spends operating and 
monitoring your ML systems, freeing you to 
spend more time building and less time on 
administrative overhead.

https://circleci.com/docs/notifications/
https://www.tensorflow.org/tfx/serving/serving_config#monitoring_configuration
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Running your CI/CD workflows in the cloud using CircleCI’s 
managed cloud compute resources
This example used a self-hosted runner to execute commands in a local 
environment. This is advantageous when dealing with privileged data that you 
do not want to leave your network but requires that you have your own local 
machines for the task.

You can run ML tasks (or any CI/CD task) directly on CircleCI’s managed 
compute resources by specifying a Docker, Linux VM (virtual machine), macOS, 
Windows, GPU, or Arm execution environment in your CircleCI configuration. 
You can also use your own Docker images with authenticated pulls. Hosted 
environments are run on CircleCI’s managed cloud compute, so you don’t need 
your own hardware — your workflows will be run on demand with automatically 
provisioned compute resources.

For example, to execute your jobs in a pre-built Python Docker container, you 
would replace the machine and resource_class options in the job with the 
following configuration code:

docker:
    - image: cimg/python:3.11.4

When using cloud compute, you will need to provide the execution environment 
access to your data. This can be done by using SSH tunneling, configuring a 
VPN, or using CircleCi’s orbs to access resources stored on public clouds such 
as AWS, Google Cloud Platform, or Azure. One common use case is to share 
ML models and data in an AWS S3 bucket, which can be authenticated and 
accessed by on-site infrastructure and CircleCI using OIDC.

Workspaces can also be used to transfer local data to cloud workloads. With 
minimal additional configuration, CircleCI workflows can run jobs that are 
configured to run on local runners or CircleCI’s managed cloud compute, with 
data persisted between them.

https://circleci.com/docs/private-images/
https://support.circleci.com/hc/en-us/articles/360049397051-How-To-Set-Up-a-VPN-Connection-During-Builds
https://circleci.com/orbs/
https://circleci.com/developer/orbs/orb/circleci/aws-s3
https://circleci.com/blog/role-based-credential-management-with-oidc/
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Using GPU resources for ML tasks in the cloud and locally
Along with specifying the CPU and memory available to your CircleCI cloud 
compute using resource classes, you can also run your ML tasks in cloud-
hosted GPU execution environments. Training and retraining ML models is a 
compute-intensive task. Leveraging GPU processing power will greatly speed 
up the process, allowing you to train faster or train and test multiple datasets 
in parallel. 

To use GPU resources in CircleCI, specify a GPU-enabled machine image in 
your configuration:

machine:
  image: ubuntu-2004-cuda-11.4:202110-01 

If you have large data processing requirements that make the cost of using 
cloud resources prohibitive, you can use your own self-hosted runners with 
your own physical GPUs.

Once you have an environment with GPU resources available, and if your 
ML platform supports it, you can configure your ML package to utilize them. 
See this guide on how to do this with TensorFlow. GPUs make short work of 
compute-intensive applications and are therefore extremely well suited for 
processing ML models.

By combining local runners with cloud GPU resources and CircleCI’s 
workspace functionality, you can access and prepare your ML training 
data on-site and then use it in the cloud without having to set up complex 
infrastructure for granting cloud resources access to your internal data stores. 
Conversely, if you are concerned about your cloud-compute costs, you can 
move data from the cloud on-site and execute your ML tasks on local GPUs 
using CircleCI’s self-hosted runners.

https://circleci.com/docs/using-gpu/
https://www.tensorflow.org/install/gpu_plugins
https://hsf-training.github.io/hsf-training-ml-gpu-webpage/aio/index.html
https://circleci.com/docs/workspaces/
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Conclusion If you followed the steps in this guide, you now have a fully functional MLOps pipeline capable 
of continuously building, testing, training, deploying, and retraining your machine learning 
models. This frees your ML experts from manually running pipelines, testing data, and deploying 
vetted models, allowing them to focus on building more accurate models and features. 

This MLOps pipeline will also enable your organization to efficiently track model performance 
and update models as needed to ensure that the models are performing optimally for the 
given data. By leveraging automation and tracking performance, your teams can improve the 
development cycle of ML models, reducing the amount of time it takes for models to go from 
development to production. Ultimately, by utilizing this MLOps pipeline, your organization will be 
able to make more accurate decisions faster, with higher confidence.

CircleCI can do much more than we can demonstrate in the space of this guide. It provides a 
flexible, scalable platform for accomplishing fully bespoke ML workflows to suit any use case. 
You can get started today with a free account, or reach out to our team for personalized help 
finding the right plan and setting up customizable CI/CD pipelines tailored to your specific ML 
project needs.

 

https://circleci.com/signup/
https://circleci.com/contact/

