
1

2CI/CD for iOS: Build, Test, Deploy

The Theory So... what is CI and what is CD?
Most developers think of CI as continuous integration and CD as
continuous delivery. Integration is the action of integrating or validating, in
a repeated (continuous) way. Usually that means integrating or validating
every PR, commit or merge. To put it more simply, we run our tests
repeatedly. In a similar way, Continuous Delivery means we generate
working binaries in a repeated way. The repetition for CD doesn’t need to
be at the same cadence as CI.

If you still have questions, we can check the Wikipedia article:

�CI/CD bridges the gaps between development and operation activities
and teams by enforcing automation in building, testing and deployment of
applications.

To make it even more clear, consider this example. As developers,
we know about testing because we all write tests for our classes and
methods, components and frameworks. There is a point when it makes
sense to test those components against existing (and new) tests in a
continuous and automated way. Running those tests consistently will
ensure the correctness of the code written, and improve its quality.

Similar to the way Xcode runs the compiler every time we build our
applications, continuous integration checks for the correctness of our
code. (I know you actually need to compile the app to run it, but hopefully
you get the point).

https://en.wikipedia.org/wiki/CI/CD

3CI/CD for iOS: Build, Test, Deploy1 — Refactoring means rewriting existing code but not changing how that code interacts with external actors

In a similar way, continuous delivery automatically builds and delivers
new versions of the application (or SDK). This can happen on every
merge or at a particular time of day (hello night builds). Continuous
delivery is CI’s natural partner and next in line. Why is it next? Usually
we perform the build and ship tasks after all tests are green and we can
guarantee a minimum quality of our app.

Continuous delivery can become a challenging aspect of app
development. The costs are high in time and knowledge. CD is by far
one of the most complex and brittle parts of the development process.
CD can be well worth the cost because of how useful it is once you
get it working. For many development teams, building and shipping an
app to TestFlight or the AppStore can be stressful. Imagine how much
less stressful it would be if you managed to automate that process.
As a bonus, you have to document and transfer knowledge to create
the delivery pipeline. This scales your team up a level, from relying on a
person, to using a set of documents/code that is available to everyone.
The result is a better and more robust delivery process that cannot be
stopped by a single point of failure.

Delivery is usually performed by some tool on top of our friend Xcode.
In this case we will use Fastlane, a tool that leverages xcodebuild.
Fastlane is a group of Ruby scripts and plugins for automation, while
xcodebuild is a command line tool you use to interact with your Swift or
ObjC project.

There is no doubt about why CD is so complex. In our case building and
shipping an iOS application involves: provisioning profile, certificate,
knowing the target of the project you want to build, push notification
certificates, uploading to the chosen store. True, some of the work is
now automated but there are still many, many steps.

Why is CI/CD important?
As a developer I like working on a codebase that has tests. Why?
Tests define the behaviour of the written code. I can refactor1 with
confidence. If tests are green, it is likely that I did not break anything. If
tests are not green, that means I need to check what might have been
broken or overlooked. In Xcode it is well integrated with CMD+U, but it
can also be slow. Delegating your tests to your CI counterpart can be a
good alternative. When you add a commit into an existing, open PR, CI
can pick it up and run all the tests for you.

Why are tests important?
If you’re trying to validate MVP, it is possible that you do not need
tests. That is a very narrow use case, though. If you know what you are
building you should have tests. If your engineering team is made up of
five or more people and you don’t have tests, that is a red flag.

4CI/CD for iOS: Build, Test, Deploy

If your Engineering Manager tells you tests are
not worth it, that is another red flag. Testing is
like insurance. If you don’t use it, your house
could burn and you may not be able to cover
the cost of repairing it.

Note: The need for tests can be a heated topic.
In this book we will describe different viewpoints
on the subject.

Tests increase confidence, and that confidence
increases over time. For example, we may
want to roll out our small app in four releases.
For every release we make tests mandatory.
On every new release we increase the amount
of tests because new code = new tests. What
happens at the end of the fourth release?
We have tests that validate old parts of the
shipped app while we used new tests for the
newer parts. We call these regression tests.
Regression tests cover existing parts of the app
and verify that we did not break anything.

5CI/CD for iOS: Build, Test, Deploy

As I mentioned earlier, controlling cost is an
important reason to have tests. Code shipped
to production passes through different stages
of development: requirements gathering, design,
implementation, QA, and production. Catching bugs
during the requirements stage can make a huge
impact on reducing costs. Creating the wrong set of
requirements is as bad as writing bad code.

For example: a requirement says the mortgage rate
is 2%, but that rate should be 3%. It will not matter
if the code follows the requirement, the rate will be
wrong. A bug is a bug.

As a bug passes through each phase, it becomes
more and more expensive, and it is possible that
the cost will increase over time. Because you do not
have the context you need, you will invest more time
in fixing an unfamiliar part of the codebase. If the
person who wrote it is not on the team anymore,
that cost spikes! Having tests will help you better
understand your codebase so you make fewer
errors. Catching bugs earlier in the cycle reduces
the cost of development. If the bug affects a critical
part of the system you could also lose users,
conversion, or money for the business.

5CI/CD for iOS: Build, Test, Deploy

6CI/CD for iOS: Build, Test, Deploy

Does testing improve code quality?
The short answer is “yes”. A longer answer might be “yes, but indirectly
in some cases”. Not having tests and ending up with bad code creates
technical debt. The easier it is to work with your codebase and make
changes to it, the more productive your team can be. No one can avoid
all bad code or technical debt; we can reduce it by testing. For some
organizations, code that is missing tests, is considered technical debt
by default. Working with untested code is more difficult, more error
prone, and more unpredictable.

Not trying to get into trouble here, but it is similar to the way that
strongly-typed languages are less error prone than typeless languages.
Some typeless languages are developing typed alternatives, like
JavaScript and TypeScript.

This image comes from the Stripe Developer Coefficient from 2018.The first step of our CI/CD integration is making sure we can lint and
build our app, but we will talk about that later on. For now we will skip
to the second step, which is running the tests against the app. Tests
come from a need to validate written code against something. To prove
that your code works, you need a way to see that it works, or you need
one or more tests to validate that the code behaves “as expected”. In most
Agile workflows tickets define tasks and establish “acceptance criteria”.
Acceptance criteria is a set of rules that is used by someone other than
the developer to validate that the code does what it is supposed to do.
Verifying acceptance criteria is not the only way to test;

you can also write tests to make sure there is high enough code
coverage. Code coverage is a percentage over the total amount of code
that is “covered” by test cases for that code. For example, a method
that uses if/else, would need two tests to verify that it is fully tested (2
cases, 2 tests).

https://stripe.com/reports/developer-coefficient-2018

7

Why is my CI/CD setup important?
Assume you convinced your manager to substantially increase the number of tests your team runs. Assume also that all your colleagues are onboard
with increasing test coverage. You now have not only unit tests, but integration tests, and UI (or smoke) tests. These three types of tests create a
“testing pyramid”.

8CI/CD for iOS: Build, Test, Deploy

The testing pyramid shows the level of cost, complexity, and time it
takes to write and maintain tests. You can use the pyramid to help you
decide on the amount of code coverage you need. At the bottom, there
is fast and cheap testing. As we rise to the top, testing becomes more
complex and time-consuming,and therefore, more error prone. That is a
big reason that people do not like testing, or consider it a waste of time.
Tests need to keep running and working for them to return value.

And that is exactly why you want a CI/CD system. As your codebase
grows, the time it takes to run tests will increase from mere minutes,
and may even begin to take hours. Of course, most devs are not willing
to wait hours to merge things, right? Teams develop strategies to
mitigate long wait times. Devs want confidence and they want speed!
There are many different strategies to choose from. If you have enough
machine power, you can run tests in parallel. It might be that not every
test is needed all the time. In that case, you can run tests based on the
specific changes that were made in the codebase, and run the whole
suite less often.

That is why having a good CI/CD system empowers the team instead
of dragging it down. As your app becomes more successful, it will
become bigger and bigger, and require more power. Builds will start
to take longer, and what used to be a ten-minute build starts to hit the
pain threshold of 50 to 60 minutes. That is why parallel tests are key to
building and shipping applications quickly.

What does a CI/CD workflow look like?
What are the ideal steps to include in our workflow? First, we want to
guarantee some minimum level of correctness to not waste resources,
that’s achieved with linters. Then we take the correctness checks and
static analyzer tests. That’s the CI part of the equation. CI: Lint, Build,
Test.

Then we bundle our application, sign it with our certificate, and send
it to the chosen store. This can be the Store, Testflight, a third party
like TestFairy or Firebase App Distribution. Taking advantage of your
company's enterprise account can also be helpful. An enterprise
account is a different type of developer account that a company can
use for shipping internal or external apps.It allows you to generate a
new set of certificates and sign the app to deliver internally or externally
without any other service. It is a great option if your user test base is
big!

Many teams fear CD because they think they have to ship binaries
to users at the same cadence as its CI pipeline. That is not true!

9CI/CD for iOS: Build, Test, Deploy

Shipping betas to testers or even internal users of the company can
be decoupled from the CI cadence and can be done less frequently.
Shipping to end users is the same process but signed with a different
certificate, making it a different app. Decoupling cadence from CI
means you can choose when and how you deliver to your testers and
when you deliver to your users. It is the same process happening at
different points in time and with different actions. For example, creating
a tag in master may trigger the delivery process to the AppStore, The
options are endless, really.

This completes the cycle, from a merged PR to a new version of your
app in your device in minutes. The time will vary depending on the size
of the project.

CD: build for delivery, sign, upload (with options to ship).

10CI/CD for iOS: Build, Test, Deploy

Show me
the code
Building the CI/CD pipeline
with CircleCI

Using the sample app
The app we are using for this exercise uses more than one NASA API
to get several different images. Each API provides different images and
conditions than the others. The idea is to have 2 or 3 screens where we
can review images from each NASA API. We want to store them so that
we can access and display them later. Our goal is to create something
similar to a like button or favorites icon.

The basic element is a router to hold the navigation logic. The router
should be unit testable. Each screen will have View Models that use MVVM
architecture for screens. We will use classes to hold the networking details
and some state. This project is a simple example, so it does not use
complex architecture like RIBs. Clean, or VIPER.

For this sample project, we will be using some CocoaPods libraries that
we would not usually need to. Alamofire is great, but the Apple networking
library is really very good as well.

Starting with Xcode
We will use a basic application that we will be supercharging for our
demonstration. We will start in Xcode by creating a new application that
does not use CocoaPods. We will not be using any SwiftUI this time (sorry
about that). We will create a good old Swift application, with tests.

11CI/CD for iOS: Build, Test, Deploy

We will name it “Nasa”. It is a cool name for a cool app, and we will find
an API that will bring us some images from outer space, or maybe just
from Earth.

With the basic project created in Xcode, we can add CocoaPods. We
will use Bundler, a developer tool, to add the CocoaPods. Bundler lets
you define what libraries you want to use, and what versions of them
you want.

Create a Gemfile file: `vi Gemfile`

Enter the commands we need for right now:

source 'https://rubygems.org'

gem 'cocoapods'

The next step is installing our dependencies. This can take some time.

bundle install

The command generates a Gemfile.lock to assist any future user of
the project by installing exactly the same library versions you are using
right now. This command makes it easy for anyone to start using the
project. It is great for teams, especially teams implementing CI.

Next, we need to run all commands preceded by `bundle exec`, to
make use of the Gemfile we just created. When you run `bundle exec
pod --version` you should get a result in the range of 1.10.1. For the
example, the result should match the contents of Gemfile.lock.

Here is the interesting part: `bundle exec pod init`. What
happened? We used the power of CocoaPods tools to inspect our
project and create a Podfile file,which is similar to a Gemfile:

Uncomment the next line to define a global
platform for your project

platform :ios, '9.0'

target 'Nasa' do

	 # Comment the next line if you don't want to
use dynamic frameworks

	 use_frameworks!

	 # Pods for Nasa

	 target 'NasaTests' do

		 inherit! :search_paths

		 # Pods for testing

	 end

	 target 'NasaUITests' do

		 # Pods for testing

	 end

12CI/CD for iOS: Build, Test, Deploy

In this case we want to use iOS 13 as default, so uncomment that line
and set the platform version to 13. We also see three targets: `Nasa`,
`NasaTests`, and `NasaUITests`. Those are different “states” that we
can use to run different configurations. For this project, there are two
sets of tests for the target `Nasa` and the main target of our project,
also named `Nasa`.

We still do not have any .xcworkspace available to us. We can use the
recently created `Podfile` by using `bundle exec pod install`.

12CI/CD for iOS: Build, Test, Deploy

13CI/CD for iOS: Build, Test, Deploy

The results:

•	 �A ‘Podfile.lock’ file is created for us in similar fashion to Gemfile.
lock

•	 �A ‘Pods’ folder has been created (where our new libraries are
going to be)

•	 �We have a Nasa.xcworkspace that will become our main
working file now. This is the file we want to open Xcode with so
we can keep working. It contains all the magic that CocoaPods
uses to build and run the app

Once the installation is finished, use the Xcode shortcut ‘CMD + B’ to
build our app.

Here is a recap of our project so far. We have a working folder named
`Nasa` and two other folders for tests. One folder is for regular tests
and one is for UI tests. The main config is listed in the Project section,
with the main target and the target for tests listed below that.

Setting up an iOS app on CircleCI and
Github
Our first example repo for setup will be hosted: https://github.com/CI-
CD-for-iOS/guide-setup

Now that we have the basics working, we can use GitHub to connect to
our CircleCI instance. Go to https://circleci.com/vcs-authorize/ and log
in with your Github Account. After choosing an organization, select the
repository you want to try.

First, create a `.circleci/config.yml` file inside the project repo.
Note that `config.yml` is created inside a “hidden” folder on our
terminal. That is what the “.” stands for at the beginning of the “circleci”
folder.

https://github.com/CI-CD-for-iOS/guide-setup
https://github.com/CI-CD-for-iOS/guide-setup
https://circleci.com/vcs-authorize/

14CI/CD for iOS: Build, Test, Deploy

 This is a good starting point:

Use the latest 2.1 version of CircleCI pipeline process engine. See: https://circleci.com/docs/2.0/configuration-reference

version: 2.1

Use a package of configuration called an orb.

orbs:

	 # Declare a dependency on the welcome-orb

	 welcome: circleci/welcome-orb@0.4.1

Orchestrate or schedule a set of jobs

workflows:

	 # Name the workflow "welcome"

	 welcome:

		 # Run the welcome/run job in its own container

		 jobs:

		 - welcome/run

15CI/CD for iOS: Build, Test, Deploy

Now we have some keywords in
a .yml file. If we commit and push
this file, some changes will happen
and be shown on our project’s
CircleCI page.

Inside the workflow there is more
detail.Take a few minutes to
familiarize yourself with the steps
list, the test tab, and the artifacts
tab. The page shows that the
Executor is Docker and that it ran
on the main branch.It also shows
the number of commits, along with
information about the author and
the commit.

We are building for iOS, so
we may want to review some
documentation about Mac OS
build environments before moving
forward.

https://circleci.com/docs/2.0/hello-world-macos/?section=executors-and-images
https://circleci.com/docs/2.0/hello-world-macos/?section=executors-and-images
https://circleci.com/docs/2.0/hello-world-macos/?section=executors-and-images

16CI/CD for iOS: Build, Test, Deploy

Updating config.yml with MacOS
values
Start by changing our config.yml so that it uses a Mac machine.
To do that, we need to add the `macos` and `xcode` values to our
yml. Next, we will make a couple of changes and add test and build
information.

Test command
xcodebuild test -workspace Nasa.xcworkspace -scheme

Nasa -destination 'platform=iOS Simulator,name=iPhone

12,OS=14.4'

Build command
xcodebuild -workspace Nasa.xcworkspace -scheme Nasa

Using these two commands we can test and build our application.
We will execute these two commands one after another, as if they
depended on each other.

version: 2.1

jobs: # a basic unit of work in a run

	 build: # runs not using `Workflows` must have a `build` job as
entry point

		 macos: # indicate that we are using the macOS executor

		 xcode: 12.4.0

		 steps: # a series of commands to run

		 - checkout # pull down code from your version control
system.

		 - run:

		 # run our tests using xcode's cli tool `xcodebuild`

		 name: Run Unit Tests

		� command: xcodebuild test -workspace Nasa.xcworkspace -scheme
Nasa -destination 'platform=iOS Simulator,name=iPhone
12,OS=14.4'

		 - run:

		 # build our application

		 name: Build Application

		 command: xcodebuild -workspace Nasa.xcworkspace -scheme Nasa

17CI/CD for iOS: Build, Test, Deploy

In GitHub, CircleCI is now
included as part of our PR:

17CI/CD for iOS: Build, Test, Deploy

18CI/CD for iOS: Build, Test, Deploy

Click Details to review what is
happening in CircleCI. Note that we
are now using the Mac instance to
build and run our unit tests. Navigating
between GitHub to CircleCI and back
using the connection between the tools
facilitates an effective workflow.

When everything is green we can
merge our PR right away, but remember
that it is best that another team
member reviews it before the merge.
We are skipping this step in this project,
to simplify the process. Reviews are
important, though, and you can require
them on Github.

19CI/CD for iOS: Build, Test, Deploy

We chose to put Pods inside the project for this demonstration, so a
`Pods` folder is listed. When you are working on a different project,
you can either check those pods in, or have them pulled as a step in
your CI process. CircleCI will cache them for you if you do not include
them in your project. This decision is a mix of technical and personal
choice. I like having any code from the repository ready to be used,
but for another project that might not be an option. Other solutions,
like Carthage, cache not only the code, but the compiled binaries you
use (other libraries, for example), so that the project takes less time to
compile. For other projects, there are solutions available on CocoaPods
with Rome, or other tools like Tuist.

Note: For this project, we have not applied .gitignore. Xcode and Swift
development projects have personal files in the repository. Most of the
time, we do not want them there. We chose to include the Pods folder,
but not all teams will want to. For those teams, the /Pods folder would
be a good candidate to go into the .gitignore file. There are open source
solutions for this process: https://github.com/github/gitignore. We
included the swift .gitignore and updated the project so the configuration
files will not be included in our PRs.

For the next part of the demonstration, we will use a new project
to show how to manage multiple projects in the same repo. This
project also contains tests. Like the previous project, our new project
has 1 target for the tests (we will create a new one for UI tests). The
difference is that this project has both unit tests and integration tests.

https://github.com/CocoaPods/Rome
https://tuist.io/
https://github.com/github/gitignore

20CI/CD for iOS: Build, Test, Deploy

The internet is full of reasons for integration testing.

This “code” may have been 100% unit tested, but without integration
testing, it does not work at all.

Using mocking and stubbing in
integration testing
For the more complete project: https://github.com/CI-CD-for-iOS/
guide-test.

Integration tests make sure that two or more components work
together successfully. Setting up integration tests includes “mocking”
and “stubbing” project components. Mocking can be done with a tool.
You can also mock a component by creating a subclass (typical for
Swift) and changing the inner implementation.

Mocking components
Mocking means creating a fake version of an external or internal
service that can stand in for the real one, helping your tests run more
quickly and more reliably. A mock behaves like the real service but
in a much simpler way. When your implementation interacts with an
object’s properties, instead of its function or behavior, you can use a
mock.

Stubbing a class
Stubbing, like mocking, means creating a stand-in, but a stub only
mocks the behavior, not the entire object. You can use a stub when
your implementation only interacts with a certain behavior of the
object. If you find you are relying on multiple stubs for testing, it may
be a symptom that something in your code is not right. For example, it
might not have enough injection, or the components are too big.

https://twitter.com/bendhalpern/status/1193141566174613504?s=20
https://github.com/CI-CD-for-iOS/guide-test
https://github.com/CI-CD-for-iOS/guide-test

21CI/CD for iOS: Build, Test, Deploy

Configuring fastlane for launching
tests
We want to write and organize tests for our project around our CircleCI
setup. The long command that we saw before is going to become
annoying before long. We want an easier way to launch our tests, so we
encourage using Fastlane with CircleCI. The combination simplifies the
setup and automation of the build, test, and deploy process..

Go to our /wallet project:
 (`cd wallet`) and run the command
`bundle exec fastlane init`. Remember to use `bundle exec`
in front of the commands.

21CI/CD for iOS: Build, Test, Deploy

22CI/CD for iOS: Build, Test, Deploy

Fastlane gives you 4 options.
I will describe 2 and 3 a bit
later, but for now select the
fourth option.

We have accomplished so
much! For now, we can skip
`/fastlane/Appfile`
and work with
`/fastlane/Fastfile`.

23

We have a barebones configuration that shows what we can do.

default_platform(:ios)

platform :ios do

	 desc "Description of what the lane does"

	 lane :custom_lane do

		 # add actions here: https://docs.fastlane.
tools/actions

	 end

end

We will use the name in between ‘:’ and ‘do’ to create commands
we can run from outside the file. In fact, we will run the commands
from our CircleCI file.

First we need to migrate our 2 commands (test and build) to fastlane.

In fastlane, the equivalent of test is `scan`. The build equivalent is
`gym` (gym is the other name given to `run_test`). You can find
more information in the great fastlane documentation.

The updated fastfile

lane :test do

	 # add actions here: https://docs.fastlane.tools/
actions

	 scan(

			 workspace: "ETHRadar.xcworkspace",

			 scheme: "ETHRadar",

			 clean: true,

			 destination: "platform=iOS
Simulator,name=iPhone 12,OS=14.4"

)

end

Go to your folder and run `bundle exec fastlane test`. We added
the “clean” option, which will help avoid any external factors affecting
your test. The option is configurable, so you do not have to use it, but it
is worth giving it a try.

Now that we have the fastfile and the modified config.yml to call it, we
can do another push.

https://docs.fastlane.tools/actions

24CI/CD for iOS: Build, Test, Deploy

Previous screenshots were from a computer, but these are from the
CircleCI log. The format for each is similar,

There are different files running, with 9 tests total. Ideally we want
some more detail on our PRs, but it is not available on GitHub.

To set it up, go to the CircleCI website and navigate to the VCS section
of the CircleCI Organization Settings.

24CI/CD for iOS: Build, Test, Deploy

25

You will be asked to enter your GitHub password, and you may need
permissions.

When you return to the GitHub settings page, CircleCI Checks has been
added as a new GitHub App.

There is only 1 job running, but in our config.yml we said we would build
and test. Something is going on.To find out what is happening, we need
to look at our config.yml.

26CI/CD for iOS: Build, Test, Deploy

The config.yml states that `build’, jobs not
using `Workflows` must have a `build` job
as entry point. We need to configure our project
with the proper workflows to take full advantage
of the GitHub checks. This configuration lets
us visualize the activity clearly and shows our
project progress on CI.

Ideally we should do some checks even before
we run our tests. We could do some linting,
perhaps using Danger or a similar tool, or maybe
make sure some non-functional checks are
passed. Then we want to run tests, and maybe
after that we can work on making a build for
release. To do this, we need to transform our
current config.yml file to something that works
in “steps”.

With the help of an orb (prebaked configuration
yaml that you or someone else put together) we
can create some more quality checks before we
run our tests. We will also introduce a linter and a
non-functional review using SwiftLint + Danger +
CircleCI quality checks.

Note: To run orbs someone from your team needs to approve them in the CircleCI
security settings for your organization.

http://https://circleci.com/docs/2.0/workflows/?section=pipelines
http://https://circleci.com/docs/2.0/workflows/?section=pipelines
http://https://circleci.com/docs/2.0/workflows/?section=pipelines
https://circleci.com/developer/orbs/orb/storytel/ios-quality-checks

27CI/CD for iOS: Build, Test, Deploy

The initial native code will not actually work because
we first need to configure SwiftLint and Danger. Please
bear with me.

We define our jobs first, and then, below, we create the
sequence of jobs that need to run in order.

As expected, both Danger and Lint failed. One because
we did not have a Dangerfile configured and the other
because we didn’t consider linting in the first place.

28CI/CD for iOS: Build, Test, Deploy

Here is a super quick setup checklist:

•	 �Add gem 'danger' to our Gemfile

•	 �Run bundle install

•	 �To initiate bundle exec danger init

•	 �Follow instructions in terminal

•	 �Remember to add your Token into the CircleCI
Project Settings in Environment Variables

There are some additional concerns for CircleCI, which
are covered in the Danger Getting Started Guide.

https://danger.systems/guides/getting_started.html

29CI/CD for iOS: Build, Test, Deploy

Setting up tokens
If "Only build pull requests" cannot be enabled for your project, Danger
can still work by relying on the CircleCI API to retrieve PR metadata.
Using the API requires an API token.

•	 �Go to your project > Settings > API Permissions. Create a token
with scope "view-builds" and a label like "DANGER_CIRCLE_CI_
API_TOKEN".

•	 �Settings > Environment Variables. Add the token as a CircleCI
environment variable, which exposes it to the Danger process.

The result is just a message, not actual rules that were applied to this PR.
Although I created a token for myself this time, I recommend creating a
new user for the robot to give feedback.

29CI/CD for iOS: Build, Test, Deploy

30CI/CD for iOS: Build, Test, Deploy

Now we need to fix our code to
have a happy linter. It is not best
practice of course, but we could
also just bend some rules to make
it pass.

Notice that the GitHub workflow
checks are shown. Which is helpful,
because it gives you insight into
what is happening without having
to move from your PR.

31CI/CD for iOS: Build, Test, Deploy

Configuring Danger
For configuring Danger, the Getting Started guide is a helpful resource.

We have already made some errors.

Other errors show inside /Pods. Because we do not own this folder we
will just create a `.swiftlint.yml` file and mark the /Pods folder as
disabled for linting.

We also disabled some linting rules inside `keyboardExtension.
swift` to show that by using `// swiftlint:disable force_
cast` we can disable the linter for those lines. There is a closing `//
swiftlint:enable force_cast`.

It is time to review our workflows. They also run in parallel to maximise
speed.

All checks are green and we can now move forward.

Note: We used a default version of lint and a basic version of Danger.
These are complex tools that can support almost any workflow or rule
you can imagine.

https://danger.systems/guides/getting_started.html

32CI/CD for iOS: Build, Test, Deploy

Creating functional tests
We have done some testing, but before we can ship our app, we need
a bit more confidence that our application is indeed ready for users.
We could write more unit and integration tests, but we can also add
other types of tests to our repertoire.

Unlike unit tests, which are small-scale tests for parts of our code, or
integration tests, which are tests that interact with device features like
geolocation, functional and UI tests ensure the app runs and functions
as it should for an end user.

In the next example we will show how to create functional tests, using
the tools Xcode provides by default. Not only can we simulate user
touches, we can simulate text input and other interactions as well.
We will inspect the screen, navigate to another screen, then go back
to the original one, simulating what a user would do. As you can see,
unlike unit or integration tests, functional or UI tests are less specific
but allow a wide range of testing strategies.

We will be using the UI test suite to hit the same endpoints that the
app hits regularly. Because these endpoints belong to external services,
we do not want to hit them for real. Stubbing solves this problem,
and some Swift libraries allow you to inject json files into your tests
by copy/pasting the network responses. Two of these libraries are
MockingJay and OHHTTPStubs.

Running the UI tests
To create the UI tests we need a new target specifically for them.
The new target will allow us to run them separately, if we choose to,
in a simpler way.

https://github.com/kylef/Mockingjay
https://github.com/AliSoftware/OHHTTPStubs

33CI/CD for iOS: Build, Test, Deploy

Scroll all the way down the Xcode window and Click the “+” button under in the Targets section.
You will be prompted to select the kind of target. Then, search for a test. There will be 2 options
to choose from; select the UI test option. Leave the default responses in the rest of the fields.

33CI/CD for iOS: Build, Test, Deploy

34CI/CD for iOS: Build, Test, Deploy

When we open the ETHRadarUITests file, we can
create a new function or rename the example
function. Keep the cursor inside the function and
get ready for some magic. At the bottom left of the
Xcode window, there is a Record button. Clicking
Record launches our app, records our touches
and transforms them into code. It is just that easy
to automate functional testing. Give it some time
to compile and launch the app, then watch as it
records our touches and keyboard strokes.

And as if by magic, our tests have passed.

Note: Because it is not really magic, I had to do
some working around a bit and some waiting for the
external server response. For me, it was time and
effort well spent.

35

Adding new tests to CircleCI
Now we are ready to add a new step into our workflow in CircleCI. To
do this, we will create a new scheme. Schemes are a way of building
targets with particular conditions within a project. Our new scheme will
effectively separate unit and integration testing from UI tests.

There are default schemes, and it might be helpful to understand a little
bit about them.

Click Edit Scheme… and navigate to Test. Our UITests target is not
selected. We have 2 options: we can add the UITests target to the Tests
scheme; or we can create a new scheme that runs just UITests. The
second option is a cleaner solution, especially if you have more tests
that the 4 we have in this example.

36CI/CD for iOS: Build, Test, Deploy

Create a new ETHRadarUI scheme just for our UITests
target. test. And we Check the box to enable it. Add it by
clicking the + button. From the dropdown at the top of
the Xcode window, select ETHRadarUI. Press CMD+U
to trigger the test.

For the automation on CircleCI, we need to:

•	 Create a copy of the test job in the circle.yml file

•	 Rename the copied job UITest

•	 Change the fastlane command to use UITest

•	 Create the fastlane job

•	 �Go to the Fastfile inside wallet folder, and
duplicate the test lane

•	 Rename the copied lane to UITest

•	 Select the ETHRadarUI scheme

37CI/CD for iOS: Build, Test, Deploy

We want the test to run only if the
previous tests pass, so we will need
to specify on our workflow that
UITests depends on the original Test
scheme.

`config.yml`

`Fastfile`

38CI/CD for iOS: Build, Test, Deploy

Return to CircleCI and you will discover that our tests are being
recognised and shown in the UI.

And if we head over to CircleCI what should expect something like this.

Before closing the section there is a last bit you might be interested in.
We want to store our test results in CircleCI, because it will be easier
for us to monitor our test results. We need to update the fastlane scan
script to include `junit` format for test results, code coverage, and
output folder. For the config.yml we want to flag that folder as a folder
with the test results.

39CI/CD for iOS: Build, Test, Deploy

Deploying with CircleCI and fastlane
Our sample project has reached its final phase. Our last task is to
configure the delivery of our application using fastlane and CircleCI.
We began with nothing more than an idea, and we are nearly ready to
upload our app for beta distribution.

Although much of the process can be automated from Xcode, it is a
good idea to familiarise yourself with the basics of Apple code signing
by reviewing this guide.

Why use a different tool than Xcode?
Working as a team, it is harder to share credentials easily using
Xcode, and also, you may not want to give everyone the same level of
credentials. Xcode is not great for CI and many CI systems will need
more flexibility and power. Many people prefer a tool that streamlines
the certificate/security language and process, which Xcode does not
do. As a result, we choose to use fastlane, as do many other teams.
Some really big teams may have a custom solution, but for most
teams, fastlane is a great choice.

The 3 things we need to get started are:

•	 Private key

•	 Certificates

•	 Provisioning profiles

These items are required to sign the app. They have a complicated
relationship with each other, so managing this process in a big project
can be cumbersome. Luckily, fastlane has a tool (match) to help us
automate the process.

Note: fastlane recommends that you use an account created exclusively
for this purpose. They do not recommend using a regular account.

In the wallet/ folder, start with `bundle exec fastlane match` and
follow the instructions in this tutorial. You will need to keep your Apple
credentials handy, because the process involves creating the files
mentioned earlier, and storing them on a shared git repository. Later
CircleCI or any developer can pull those files from the repository to
build and ship the app. More than one tool can be used to store those
credentials: git, s3,or google Cloud.

https://codesigning.guide/

40CI/CD for iOS: Build, Test, Deploy

Now that fastlane has set up Matchfile
we can execute `bundle exec fastlane
match development` to create
development certs. Continue to follow
the fastlane instructions.To create the
development certs, you will need to give a
passphrase to the repository for security.
Make sure to store that passphrase
properly. In our case, we will use the
passphrase “testCircle”.

Because our app does not exist yet,
fastlane will complain. There are other
fastlane commands we can use instead
that will allow us to complete this task.

Type `bundle exec fastlane produce`.
Remember that any fastlane interaction
with the store will require your credentials.
You can specify them on the Matchfile.

Note: fastlane produce caused an error, so
we ended up manually creating an app on
the portal. It did create the bundle, though.

41CI/CD for iOS: Build, Test, Deploy

Remember to monitor the instructions from the terminal. If you are not
specifying your details on Matchfile, you will be prompted to enter the
same information multiple times.

The result of this process is that all keys are created now and are
available to use.

Now that we have the certificates ready, go back to the Fastfile. Create
a new line and use the fastlane tools sigh and cert to build the app for
beta distribution.

41CI/CD for iOS: Build, Test, Deploy

42CI/CD for iOS: Build, Test, Deploy

Debugging failed jobs
It seems like something is not right, so we will take this opportunity to
use a handy feature of CircleCI: ssh debugging. When you rerun with
SSH on the UI, you can ssh into the instance to find out exactly what is
happening so you can troubleshoot on the fly.

To use ssh to debug this job and find out why it failed, we need an ssh
key.

ls -al ~/.ssh will reveal if your machine already has a key. If there is
an ssh key, there will be a file named id_rsa.pub.

If you do not have an ssh key, follow these instructions .

When you rerun the job with ssh, a message box will pop up.

You can now SSH into this box if your SSH public key is

added:

	 $ ssh

Enter:

$ ssh -p 54782 162.221.90.194

Running this command grants us access to the machine running the
job. Once we ssh in, our code will be inside the project folder. You
can do whatever you would on your local machine. Go ahead and run
fastlane inside that ssh machine. You will discover that we are missing
some bits from fastlane certificate tools in our configuration. From
previous experience, I am guessing that we are most likely missing
some env vars.

https://docs.github.com/en/github/authenticating-to-github/generating-a-new-ssh-key-and-adding-it-to-the-ssh-agen

43CI/CD for iOS: Build, Test, Deploy

SSH debugging is great, but it is not as
good as new 2FA requirements from
Apple for access to some APIs. To
create an app store connect API key and
use it in fastlane, use this guide.

When I arrived at this point the first
time I built this project, something was
still not right, because match could not
import the repo. To avoid this, validate
your match configuration with CircleCI.

Note: When using `match` inside CircleCI
it is better to use the ssh url on your
Matchfile. In the development computer
I used, https was better while working
locally on the computer. There is no
downside to changing the urls while you
are developing. Just make sure the ssh
url is checked into the repo for CircleCI.

https://docs.fastlane.tools/app-store-connect-api/
https://circleci.com/docs/2.0/ios-codesigning/#nav-button
https://circleci.com/docs/2.0/ios-codesigning/#nav-button

44CI/CD for iOS: Build, Test, Deploy

After the key is uploaded, verify that the
Fastfile will correctly:

•	 Download the certs using match

•	 Build the app

•	 Upload to testflight

We will also want to store the binaries
in CircleCI so that they are available to
download manually.

45CI/CD for iOS: Build, Test, Deploy

When things go well we can observe the different steps as they run;
downloading the certificates, building the app, then archiving the app.
As a bonus, the ipa we are generating will be stored in the “binaries”
folder, so it will be captured by CircleCI and stored for us.

Because we created only a development certificate with match, the
Testflight will fail. We need to call bundle exec fastlane match
appstore to generate certificates that can go to Testflight. We then
need to call the beta lane again with fastlane bundle exec fastlane
beta. Of course, Testflight is always a bit picky so we need to add the
icon.

Finally, after all that work we successfully shipped our app to testflight!
And our process will ship the app every time we complete a full testing
cycle. The important part to remember is that we don’t “need” to use
that shipped app. We can ship as many apps as we want, and choose
what versions we make available to the end users or testers.

We are able to submit as many versions as we want to Apple. In fact,
it is a good practice to actually ship things daily, and we could do that
with a CircleCI job that runs at night or on every PR merge (a topic for
another book). Once we have CircleCI set up and the scripts clear, we
can mix and match with all the power offered by the tools we are using.

46CI/CD for iOS: Build, Test, Deploy

Note: The example project we are using has some differences than what is documented. Because we ported an older
Xcode project it is possible that some unexpected problems from Xcode 8 or 9 were carried over. My solution was to
disable Automatic signing, and instead, pick the default Provisioning profile created by match. That made the build
successful for me. There are still some limitations on the key we created distributing automatically to testers, but the app
is uploaded.

46CI/CD for iOS: Build, Test, Deploy

47CI/CD for iOS: Build, Test, Deploy

Learning more about
your project with Insights
The Insights dashboard is a great way to
understand more about your project, and it
is provided by default as a part of CircleCI.
The dashboard shows an overview of the
health and usage statistics of repository
build processes like credit usage, success
rates, pipeline duration, and other pertinent
information. What do you have to do? Nothing.
Insights does it for you.

Enter a workflow name to discover data about
time and resources used ($$ credits). Test
insights show you potentially bad tests and
areas to improve your project. This valuable
information can reduce costs and help you
make better engineering decisions, without
the additional cost of using another external
service to collect and analyze it.

48CI/CD for iOS: Build, Test, Deploy

Conclusion Let me take a moment to recap our progress. We started this experiment by
learning just the basics — what CI and CD are and why they are important. We
explored the reasons that testing is so important to this process.

We set up a sample iOS application on CircleCI and Github, and configured
fastlane for launching tests. We created a suite of tests that includes unit tests,
integration tests, and UI tests, which give us speed, precision, and stability.

We discovered the secrets to deploying with CircleCI and fastlane, creating the
certificates needed to sign and ship the app to the AppStore. We learned how to
debug failed jobs from the command line, and how to gain actionable insights
about why those jobs failed. As we’ve seen, this does not have to be difficult.
It makes sense to start mobile app projects the right way: with testing and CI/
CD built in from the beginning. Our CI/CD process keeps things ready for teams
to work together doing what they do best, and letting the CI system automate
the most essential tasks. We can ship apps with increased confidence and
significantly reduce the amount of time we dedicate to repetitive tasks.

Before we wrap up, here are some useful resources that could help you begin
your continuous integration journey:

•	 �Mobile and browser testing
on CircleCI: simple setup,
easy management, increased
confidence

•	 Mobile integrations with orbs

•	 Hello World examples

•	 Sample config.yml files

https://circleci.com/blog/mobile-and-browser-testing-on-circleci-simple-setup-easy-management-increased-confidence/

https://circleci.com/blog/mobile-and-browser-testing-on-circleci-simple-setup-easy-management-increased-confidence/

https://circleci.com/blog/mobile-and-browser-testing-on-circleci-simple-setup-easy-management-increased-confidence/

https://circleci.com/blog/mobile-and-browser-testing-on-circleci-simple-setup-easy-management-increased-confidence/

https://circleci.com/integrations/testing/#mobile-testing

https://circleci.com/docs/2.0/hello-world/

https://circleci.com/docs/2.0/sample-config/#section=configuration

