
OPERATIONS GUIDE
A guide for administrators of CircleCI Server
v3.1.0 on AWS or GCP

docs@circleci.com

Version , 07/06/2021: FINAL

CircleCI Server v3.x Operations Overview . 1
Build Environment . 1

CircleCI Server v3.x Metrics and Monitoring . 3
Metrics Collection . 3

CircleCI Server v3.x User Accounts. 5
Suspending Accounts . 5

Reactivating Accounts. 5

Limiting Registration by GitHub Organization . 6

CircleCI Server v3.x Orbs. 7
Managing Orbs . 7

List available orbs. 7

Import a public orb . 7

Fetch a public orb’s updates . 7

CircleCI Server v3.x VM Service . 8
AWS EC2. 8

Google Cloud Platform . 11

Configuring VM Service . 11

CircleCI Server v3.x Configuring External Services. 12
External Database and Vault Setup for CircleCI Installations . 12

PostgreSQL. 12

CircleCI Server v3.x Load Balancers. 15
Make the frontend load balancer private . 15

CircleCI Server v3.x Authentication . 16
Using Docker Authenticated Pulls . 17

Docker executor . 17

Machine executor (with Docker orb) . 18

Machine executor (with Docker CLI) . 18

AWS ECR . 19

See also . 21

CircleCI Server v3.x Build Artifacts . 22
Safe and Unsafe Content Types . 22

CircleCI Server v3.x Usage Data. 24
Current Data Collected. 24

Security . 25
Overview. 25

Encryption. 25

Sandboxing . 25

Integrations. 25

Audit Logs . 26

Checklist To Using CircleCI Securely as a Customer . 28

CircleCI Server v3.x Application Lifecycle. 29

Semantic Versioning . 29

Release Schedule . 29

CircleCI Server v3.x Troubleshooting and Support . 30
Start Admin Console . 30

Generate Support Bundle . 30

Managing Pods. 30

Debug Queuing Builds . 31

CircleCI Server v3.x Backup and Restore. 32
Overview. 32

The setup . 32

Server 3.x backups on AWS. 32

Server 3.x backups on GCP . 36

Server 3.x backups with S3 Compatible Storage . 39

Creating backups . 41

Restoring backups . 43

Optional - Scheduling backups with kots . 44

Troubleshooting Backups and Restoration . 44

CircleCI Server v3.x Operations Overview

The following guide contains information useful for CircleCI server Operators, or those responsible for

ensuring CircleCI server 3.x is running properly, via maintenance and monitoring.

It is assumed that you have already read the Server 3.x Overview.

CircleCI server schedules CI jobs using the Nomad scheduler. The Nomad control plane runs inside of

Kubernetes, while the Nomad clients are provisioned outside the cluster. The Nomad clients need access to

the Nomad control plane, output processor, and VM service.

CircleCI server can run Docker jobs on the Nomad clients, but it can also run jobs in a dedicated VM. These

VM jobs are controlled by the Nomad clients, therefore the Nomad clients must be able to access the VM

machines on port 22 for SSH and port 2376 for remote Docker jobs.

Job artifacts and output are sent directly from jobs in Nomad to object storage (S3, GCS, or other supported

options). Audit logs and other items from the application are also stored in object storage so both the

Kubernetes cluster and the Nomad clients will need access to object storage.

Build Environment

CircleCI server 3.x uses Nomad as the primary job scheduler. Refer to our Introduction to Nomad Cluster

Operation to learn more about the job scheduler and how to perform basic client and cluster operations.

By default, CircleCI Nomad clients automatically provision compute resources according to the executors

configured for each job in a project’s .circleci/config.yml file.

Nomad Clients

Nomad Clients run without storing state, enabling you to increase or decrease the number of containers as

needed.

To ensure enough Nomad clients are running to handle all builds, track the queued builds and increase the

number of Nomad Client machines as needed to balance the load. For more on tracking metrics see the

Metrics and Monitoring section.

If a job’s resource class requires more resources than the Nomad client’s instance type has available, it will

remain in a pending state. Choosing a smaller instance type for Nomad clients is a way to reduce cost, but

will limit the Docker resource classes CircleCI can use. Review the available resource classes to decide what

is best for you. The default instance type will run up to xlarge resource classes.

See the Nomad Documentation for options on optimizing the resource usage of Nomad clients.


The maximum machine size for a Nomad client is 128GB RAM/64 CPUs. Contact your

CircleCI account representative to request use of larger machines for Nomad Clients.

For more information on Nomad port requirements, see the Hardening Your Cluster section.

Build Environment | OPERATIONS GUIDE | 1

https://circleci.com/docs/2.0/server-3-overview
https://www.nomadproject.io/
https://circleci.com/docs/2.0/nomad/
https://circleci.com/docs/2.0/nomad/
https://circleci.com/docs/2.0/executor-types/#available-docker-resource-classes
https://www.nomadproject.io/docs/install/production/requirements#resources-ram-cpu-etc
https://circleci.com/docs/2.0/server-3-install-hardening-your-cluster/?section=server-administration#nomad-clients

GitHub

CircleCI uses GitHub or GitHub Enterprise as an identity provider. GitHub Enterprise can, in turn, use SAML

or SCIM to manage users from an external identity provider.


CircleCI does not support changing the URL or back-end GitHub instance after it has been

set up.

The following table describes the ports used on machines running GitHub to communicate with the services

and Nomad Client instances.

Source Ports Use

Services 22 Git access

Services 80 or 443 API access

Nomad Client 22 Git access

Nomad Client 80 or 443 API access

Build Environment | OPERATIONS GUIDE | 2

https://docs.github.com/en/github-ae@latest/admin/authentication/about-identity-and-access-management-for-your-enterprise
https://docs.github.com/en/github-ae@latest/admin/authentication/about-identity-and-access-management-for-your-enterprise

CircleCI Server v3.x Metrics and Monitoring

Metrics such as CPU or memory usage and internal metrics are useful in:

• Quickly detecting incidents and abnormal behavior

• Dynamically scaling compute resources

• Retroactively understanding infrastructure-wide issues

Metrics Collection

Scope

Your CircleCI server installation collects a number of metrics and logs by default, which can be useful in

monitoring the health of your system and debug issues with your installation.

 Data is retained for a maximum of 15 days.


Prometheus Server is not limited to only scrape metrics from your CircleCI server install. It

will scrape metrics from your entire cluster by default. You may disable Prometheus from

within the kots admin console config if needed.

Prometheus

Prometheus is a leading monitoring and alerting system for Kubernetes. Server 3.x ships with basic

implementation of monitoring common performance metrics.

Kots Admin - Metrics Graphs

By default, an instance of Prometheus is deployed with your CircleCI server install. Once deployed, you may

provide the address for your Prometheus instance to the kots admin dashboard. Kots will use this address to

generate graph data for the cpu and memory usage of containers in your cluster.

The default Prometheus address is http://prometheus-server

From the kots dashboard, select "configure graphs". Then enter http://prometheus-server and kots will

generate resource usage graphs.

Telegraf

Most services running on server will report StatsD metrics to the Telegraf pod running in server. The

configuration is fully customizable, so you can forward your metrics from Telegraf to any output that is

supported by Telegraf via output plugins. By default, it will provide a metrics endpoint for Prometheus to

scrape.

Use Telegraf to forward metrics to Datadog

The following example shows how to configure Telegraf to output metrics to Datadog:

Open up the management console dashboard and select Config from the menu bar. Locate the Custom

Metrics Collection | OPERATIONS GUIDE | 3

https://prometheus.io/
http://prometheus-server
http://prometheus-server
https://www.influxdata.com/time-series-platform/telegraf/
https://docs.influxdata.com/telegraf/v1.17/plugins/#output-plugins

Telegraf config section under Observability and monitoring . Here there is an editable text window where

you can configure plugins for forwarding Telegraf metrics for your server installation. To forward to

Datadog, add the following, substituting my-secret-key with your Datadog API key:

[[outputs.datadog]]
 ## Replace "my-secret-key" with Datadog API key
 apikey = "my-secret-key"

For more options, see the Influxdata docs.

Metrics Collection | OPERATIONS GUIDE | 4

https://docs.influxdata.com/telegraf/v1.17/plugins/#output-plugins

CircleCI Server v3.x User Accounts

This section provides information to help operators manage user accounts. For an overview of user

accounts, view the Admin settings overview from the CircleCI app by clicking on your profile in the top right

corner and selecting Admin.

Suspending Accounts

This section covers how to suspend new, active, or inactive accounts.

New Accounts

Any user associated with your GitHub organization can create a user account for your CircleCI Server

installation. In order to control who has access, you can choose to automatically suspend all new users,

requiring an administrator to activate them before they can log in. To access this feature:

1. Navigate to your CircleCI Admin Settings

2. Select System Settings from the Admin Settings menu

3. Set Suspend New Users to True

Active Accounts

When an account is no longer required, you can suspend the account so it will no longer be active and will

not count against your license quota. To suspend an account:

1. Navigate to your CircleCI Admin Settings

2. Select Users from the Admin Settings menu

3. Scroll to locate the account in either the Active or Inactive window

4. Click Suspend next to the account name and the account will appear in the Suspended window

Inactive Accounts

Inactive accounts are those that have been approved by the administrator of the server installation but have

not logged into the system successfully. These accounts do not count against your server seats available.

Reactivating Accounts

This section covers how to reactivate new or previously active accounts.

New Accounts

To activate a new account that was automatically suspended and allow the associated user access to your

installation of CircleCI Server:

1. Navigate to your CircleCI Admin Settings

2. Select Users from the Admin Settings menu

3. View the Suspended New Users window

Suspending Accounts | OPERATIONS GUIDE | 5

4. Click on Activate next to the User you wish to grant access and the account will appear in the Active

Window

Previously Active Accounts

To reactivate an account that has been suspended:

1. Navigate to your CircleCI Admin Settings

2. Select Users from the Admin Settings menu

3. View the Suspended window

4. Click on Activate next to the User you wish to grant access and the account will appear in the Active

window.

Limiting Registration by GitHub Organization

When using github.com, you can limit who can register with your CircleCI install to people with some

connection to your approved organizations list. To access this feature:

1. Navigate to your CircleCI Admin Settings page

2. Select System Settings from the Admin Setting menu

3. Scroll down to Required Org Membership List

4. Enter the organization(s) you wish to approve. If entering more than one organization, use a comma

delimited string.

Limiting Registration by GitHub Organization | OPERATIONS GUIDE | 6

CircleCI Server v3.x Orbs

This section describes Orbs and how to manage them. Server installations include their own local orb

registry. This registry is private to the server installation. All orbs referenced in configs reference the orbs in

the server orb registry. You are responsible for maintaining orbs; this includes copying orbs from the public

registry, updating orbs that may have been copied prior, and registering your companies private orbs if they

exist.

Managing Orbs

Orbs are accessed via the CircleCI CLI. Orbs require your CircleCI user to be an admin. They also require a

personal api token https://circleci.com/docs/2.0/managing-api-tokens/. Providing a local repository

location using the --host option allows you to access your local server orbs vs the public cloud orbs. For

example, if your server installation is located at http://circleci.somehostname.com, then you can run orb

commands local to that orb repository by passing --host http://cirlceci.somehostname.com.

List available orbs

To list available public orbs, visit the orb directory or run:

circleci orb list

To list available private orbs (registered in your local server orb repository) run:

circleci orb list --host <your server install domain> --token <your api token>

Import a public orb

To import a public orb to your local server orb repository:

circleci admin import-orb ns[/orb[@version]] --host <your server installation domain> --token <your

api token>

Fetch a public orb’s updates

To update a public orb in your local server orb repository with a new version, run:

circleci admin import-orb ns[/orb[@version]] --host <your server installation domain> --token <your

api token>

For more Orb information, please refer to the Orb docs for the cloud product.

Managing Orbs | OPERATIONS GUIDE | 7

https://circleci.com/docs/2.0/local-cli/
https://circleci.com/docs/2.0/managing-api-tokens/
http://circleci.somehostname.com
http://cirlceci.somehostname.com
https://circleci.com/docs/2.0/orb-intro/#quick-start

CircleCI Server v3.x VM Service

CircleCI Server’s VM service controls how machine executor (Linux and Windows images) and Remote

Docker jobs are run.

This section describes the available configuration options for VM Service.


We recommend that you leave these options at their defaults until you have successfully

configured and verified your server installation.

AWS EC2

You will need the following fields to configure your VM Service to work with AWS EC2. Note that the

Access Key and Secret Key used by VM Service differs from the policy used by object storage in the

previous section.

1. AWS Region (required): This is the region the application is in.

2. AWS Windows AMI ID (optional): If you require Windows builders, you can supply an AMI ID for them

here.

3. Subnet ID (required): Choose a subnet (public or private) where the VMs should be deployed.

4. Security Group ID (required): This is the security group that will be attached to the VMs.

The recommended security group configuration can be found in the Hardening Your Cluster section.

5. AWS IAM Access Key ID (required): AWS Access Key ID for EC2 access.

6. AWS IAM Secret Key (required): IAM Secret Key for EC2 access.

It is recommended to create a new user with programmatic access for this purpose. You should attach the

following IAM policy to the user:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "ec2:RunInstances",
 "Effect": "Allow",
 "Resource": [
 "arn:aws:ec2:*::image/*",
 "arn:aws:ec2:*::snapshot/*",
 "arn:aws:ec2:*:*:key-pair/*",
 "arn:aws:ec2:*:*:launch-template/*",
 "arn:aws:ec2:*:*:network-interface/*",
 "arn:aws:ec2:*:*:placement-group/*",
 "arn:aws:ec2:*:*:volume/*",

AWS EC2 | OPERATIONS GUIDE | 8

https://circleci.com/docs/2.0/executor-types/#using-machin
https://circleci.com/docs/2.0/building-docker-images
https://circleci.com/docs/2.0/building-docker-images
https://circleci.com/docs/2.0/server-3-install-hardening-your-cluster
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

 "arn:aws:ec2:*:*:subnet/*",
 "arn:aws:ec2:*:*:security-group/${SECURITY_GROUP_ID}"
]
 },
 {
 "Action": "ec2:RunInstances",
 "Effect": "Allow",
 "Resource": "arn:aws:ec2:*:*:instance/*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/ManagedBy": "circleci-vm-service"
 }
 }
 },
 {
 "Action": [
 "ec2:CreateVolume"
],
 "Effect": "Allow",
 "Resource": [
 "arn:aws:ec2:*:*:volume/*"
],
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/ManagedBy": "circleci-vm-service"
 }
 }
 },
 {
 "Action": [
 "ec2:Describe*"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateTags"
],
 "Resource": "arn:aws:ec2:*:*:*/*",

AWS EC2 | OPERATIONS GUIDE | 9

 "Condition": {
 "StringEquals": {
 "ec2:CreateAction" : "CreateVolume"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:CreateTags"
],
 "Resource": "arn:aws:ec2:*:*:*/*",
 "Condition": {
 "StringEquals": {
 "ec2:CreateAction" : "RunInstances"
 }
 }
 },
 {
 "Action": [
 "ec2:CreateTags",
 "ec2:StartInstances",
 "ec2:StopInstances",
 "ec2:TerminateInstances",
 "ec2:AttachVolume",
 "ec2:DetachVolume",
 "ec2:DeleteVolume"
],
 "Effect": "Allow",
 "Resource": "arn:aws:ec2:*:*:*/*",
 "Condition": {
 "StringEquals": {
 "ec2:ResourceTag/ManagedBy": "circleci-vm-service"
 }
 }
 },
 {
 "Action": [
 "ec2:RunInstances",
 "ec2:StartInstances",
 "ec2:StopInstances",

AWS EC2 | OPERATIONS GUIDE | 10

 "ec2:TerminateInstances"
],
 "Effect": "Allow",
 "Resource": "arn:aws:ec2:*:*:subnet/*",
 "Condition": {
 "StringEquals": {
 "ec2:Vpc": "${VPC_ARN}"
 }
 }
 }
]
}

Google Cloud Platform

You will need the following fields to configure your VM Service to work with Google Cloud Platform (GCP).

1. GCP project ID (required): Name of the GCP project the cluster resides.

2. GCP Zone (required): GCP zone the virtual machines instances should be created in IE us-east1-b.

3. GCP Windows Image (optional): Name of the image used for Windows builds. Leave this field blank if

you do not require them.

4. GCP VPC Network (required): Name of the VPC Network.

5. GCP VPC Subnet (optional): Name of the VPC Subnet. If using auto-subnetting, leave this field blank.

6. GCP Service Account JSON file (required): Copy and paste the contents of your service account JSON

file.



We recommend you create a unique service account used exclusively by VM Service. The

Compute Instance Admin (Beta) role is broad enough to allow VM Service to operate. If

you wish to make permissions more granular, you can use the Compute Instance Admin

(beta) role documentation as reference.

Configuring VM Service

1. Number of <VM type> VMs to keep prescaled : By default, this field is set to 0 which will create and

provision instances of a resource type on demand. You have the option of preallocating up to 5

instances per resource type. Preallocating instances lowers the start time allowing for faster machine

and remote_docker builds. Note, that preallocated instances are always running and could potentially

increase costs. Decreasing this number may also take up to 24 hours for changes to take effect. You

have the option of terminating those instances manually, if required.

2. VM Service Custom Configuration : Custom configuration can fine tune many aspects of your VM

service. This is an advanced option and we recommend you reach out to your account manager to learn

more.

Google Cloud Platform | OPERATIONS GUIDE | 11

https://cloud.google.com/iam/docs/service-accounts
https://cloud.google.com/iam/docs/service-accounts
https://cloud.google.com/compute/docs/access/iam#compute.instanceAdmin
https://cloud.google.com/compute/docs/access/iam#compute.instanceAdmin

CircleCI Server v3.x Configuring External Services

External Database and Vault Setup for CircleCI Installations

This document describes how to configure the following external services for use with a CircleCI server 3.0

Installation:

• PostgreSQL v12.6

PostgreSQL

Best Practices for your PostgreSQL

Consider running at least two or more PostgreSQL replicas to enable recovery from primary failure and for

backups. Following are the recommended specifications of the PostgreSQL machines:

of Daily Active
Users

of PostgreSQL
Replicas

CPU RAM Disk NIC Speed

<50 2 8 Cores 16 GB 100 GB 1 Gbps

50 - 250 2 8 Cores 16 GB 200 GB 1 Gbps

250 - 1000 3 8 Cores 32 GB 500 GB 10 Gbps

1000 - 5000 3 8 Cores 32 GB 1 TB 10 Gbps

5000+ 3 8 Cores 32 GB 1 TB 10 Gbps

Preparing the Database

If you are configuring an externalized PostgreSQL instance as part of a new CircleCI server 3.x install, it is

recommended that you log in to your PostgreSQL instance and run the following commands. If you plan on

using a different method, you must ensure that the databases and extensions outlined below are configured

prior to running CircleCI server 3.x for the first time.

External Database and Vault Setup for CircleCI Installations | OPERATIONS GUIDE | 12

 CREATE DATABASE circle;
 \connect circle
 CREATE EXTENSION IF NOT EXISTS "pgcrypto";
 CREATE EXTENSION IF NOT EXISTS "uuid-ossp";
 CREATE DATABASE contexts;
 \connect contexts
 CREATE EXTENSION IF NOT EXISTS "uuid-ossp";
 CREATE DATABASE conductor_production;
 \connect conductor_production
 CREATE EXTENSION IF NOT EXISTS "uuid-ossp";
 CREATE DATABASE contexts_service_production;
 \connect contexts_service_production
 CREATE EXTENSION IF NOT EXISTS "uuid-ossp";
 CREATE DATABASE cron_service_production;
 \connect cron_service_production
 CREATE EXTENSION IF NOT EXISTS "uuid-ossp";
 CREATE DATABASE domain ;
 CREATE DATABASE permissions;
 \connect permissions
 CREATE EXTENSION IF NOT EXISTS "uuid-ossp";
 CREATE DATABASE vms;
 \connect vms
 CREATE EXTENSION IF NOT EXISTS "uuid-ossp";
 CREATE DATABASE orbs;
 \connect orbs
 CREATE EXTENSION IF NOT EXISTS "uuid-ossp";
 CREATE DATABASE orb_analytics;
 \connect orb_analytics
 CREATE EXTENSION IF NOT EXISTS "uuid-ossp";
 CREATE DATABASE builds_service;
 \connect builds_service
 CREATE EXTENSION IF NOT EXISTS "uuid-ossp";
 CREATE DATABASE distributor;
 \connect distributor
 CREATE EXTENSION IF NOT EXISTS "uuid-ossp";

Backing Up PostgreSQL

PostgreSQL provides official documentation for backing up and restoring your PostgreSQL 12 install which

can be found here.

PostgreSQL | OPERATIONS GUIDE | 13

https://www.postgresql.org/docs/12/backup.html

We strongly recommend the following:

• Taking daily backups

• Keeping at least 30 days of backup

• Using encrypted storage for backups as databases might contain sensitive information

• Performing a backup before each upgrade of CircleCI Server.

PostgreSQL | OPERATIONS GUIDE | 14

CircleCI Server v3.x Load Balancers

CircleCI server uses load balancers to manage network traffic coming into and out of the Kubernetes

services cluster. The three load balancers managing traffic to the Nomad cluster are internal to the VPC and

they manage the distribution of jobs to the various compute resources.

The frontend load balancer manages traffic coming from developers and your VCS, including, via the API,

CLI and CircleCI app. The frontend load balancer is public by default, but can be made private.

Make the frontend load balancer private



Webhooks: If you choose to make the frontend load balancer private, the following

conditions must be met, dependent on VCS, for webhooks to work:

• GitHub Enterprise – your CircleCI server installation must be in the same internal

network as GHE.

• github.com – set up a proxy for incoming webhooks and set it as override for the

webhook host URL. This setting can be found under Admin Settings > System
Settings > Override webhook host URL from the CircleCI app.


The Private load balancers option only works with installations on CircleCI server on GKE

or EKS.

1. From the management console, select Config from the menu bar and locate the Private load balancers
option under General Settings.

2. Check the box next to Private load balancers.


If you are using Let’s Encrypt TLS certificates, this box will not be visible as Let’s

Encrypt doesn’t work with private installations. Uncheck the box for Let’s Encrypt to

make the Private load balancer option appear.

If you are changing this setting after the initial deployment of CircleCI server, you may need to delete the

old, public load balancer so that kubernetes will request a new load balancer with the new configuration.

Make the frontend load balancer private | OPERATIONS GUIDE | 15

CircleCI Server v3.x Authentication

CircleCI server currently supports OAuth through GitHub or GitHub Enterprise.

The default method for user account authentication in CircleCI server is through GitHub.com/GitHub

Enterprise OAuth.

After your installation is up and running, provide users with a link to access the CircleCI application - for

example, <your-circleci-hostname>.com – and they will be prompted to set up an account by running

through the GitHub/GitHub Enterprise OAuth flow before being redirected to the CircleCI login screen.

CircleCI Server v3.x Authentication | OPERATIONS GUIDE | 16

Using Docker Authenticated Pulls

This document describes how to authenticate with your Docker registry provider to pull images.

Authenticated pulls allow access to private Docker images. It may also grant higher rate limits depending on

your registry provider.

CircleCI has partnered with Docker to ensure that our users can continue to access Docker Hub without

rate limits. As of November 1st 2020, with few exceptions, you should not be impacted by any rate limits

when pulling images from Docker Hub through CircleCI. However, these rate limits may go into effect for

CircleCI users in the future. That’s why we’re encouraging you and your team to add Docker Hub

authentication to your CircleCI configuration and consider upgrading your Docker Hub plan, as appropriate,

to prevent any impact from rate limits in the future.

Docker executor

For the Docker executor, specify a username and password in the auth field of your config.yml file. To

protect the password, place it in a context, or use a per-project Environment Variable.


Server 2.x customers may instead set up a Docker Hub pull through a registry mirror. Pulls

through Docker Hub registry mirrors are not yet available on Server 3.x.


Contexts are the more flexible option. CircleCI supports multiple contexts, which is a

great way modularize secrets, ensuring jobs can only access what they need.

In this example, we grant the "build" job access to Docker credentials context, docker-hub-creds, without

bloating the existing build-env-vars context:

workflows:
 my-workflow:
 jobs:
 - build:
 context:
 - build-env-vars
 - docker-hub-creds

jobs:
 build:
 docker:
 - image: acme-private/private-image:321
 auth:
 username: mydockerhub-user # can specify string literal values
 password: $DOCKERHUB_PASSWORD # or project environment variable reference

You can also use images from a private repository like gcr.io or quay.io. Make sure to supply the full

registry/image URL for the image key, and use the appropriate username/password for the auth key. For

example:

Docker executor | OPERATIONS GUIDE | 17

https://circleci.com/docs/2.0/executor-types/#using-docker
https://circleci.com/docs/2.0/configuration-reference
https://circleci.com/docs/2.0/contexts/
docker-hub-pull-through-mirror.pdf
https://cloud.google.com/container-registry
https://quay.io

- image: quay.io/project/image:tag
 auth:
 username: $QUAY_USERNAME
 password: $QUAY_PASSWORD

Machine executor (with Docker orb)

Alternatively, you can utilize the machine executor to achieve the same result using the Docker orb:

version: 2.1

orbs:

 docker: circleci/docker@1.4.0

workflows:

 my-workflow:

 jobs:

 - machine-job:

 context:

 - build-env-vars

 - docker-hub-creds

jobs:

 machine-job:

 machine: true

 steps:

 - docker/check:

 docker-username: DOCKERHUB_LOGIN # DOCKER_LOGIN is the default value, if it exists, it

automatically would be used.

 docker-password: DOCKERHUB_PASSWORD # DOCKER_PASSWORD is the default value

 - docker/pull:

 images: 'circleci/node:latest'

Machine executor (with Docker CLI)

or with the CLI:

Machine executor (with Docker orb) | OPERATIONS GUIDE | 18

version: 2
jobs:
 build:
 machine: true
 working_directory: ~/my_app
 steps:
 # Docker is preinstalled, along with docker-compose
 - checkout

 # start proprietary DB using private Docker image
 - run: |
 docker login -u $DOCKER_USER -p $DOCKER_PASS
 docker run -d --name db company/proprietary-db:1.2.3

AWS ECR

CircleCI now supports pulling private images from Amazon’s ECR service.

!
You can pull your private images from ECR repositories in any regions. However, for the

best experience, we strongly recommend you make a copy of your image in us-east-1

region, and specify that us-east-1 image for the Docker executor. Our job execution

infrastructure is in the us-east-1 region so using us-east-1 images speeds up the process

of spinning up your environment.

You can start using private images from ECR in one of two ways:

1. Set your AWS credentials using standard CircleCI private environment variables.

2. Specify your AWS credentials in .circleci/config.yml using aws_auth:

version: 2

jobs:
 build:
 docker:
 - image: account-id.dkr.ecr.us-east-1.amazonaws.com/org/repo:0.1
 aws_auth:
 aws_access_key_id: AKIAQWERVA # can specify string literal values
 aws_secret_access_key: $ECR_AWS_SECRET_ACCESS_KEY # or project UI envar reference

Both options are virtually the same, however, the second option enables you to specify the variable name

you want for the credentials. This can come in handy where you have different AWS credentials for

different infrastructure. For example, let’s say your SaaS app runs the speedier tests and deploys to staging

infrastructure on every commit while for Git tag pushes, we run the full-blown test suite before deploying to

production:

AWS ECR | OPERATIONS GUIDE | 19

version: 2
jobs:
 build:
 docker:
 - image: account-id.dkr.ecr.us-east-1.amazonaws.com/org/repo:0.1
 aws_auth:
 aws_access_key_id: $AWS_ACCESS_KEY_ID_STAGING
 aws_secret_access_key: $AWS_SECRET_ACCESS_KEY_STAGING
 steps:
 - run:
 name: "Every Day Tests"
 command: "testing...."
 - run:
 name: "Deploy to Staging Infrastructure"
 command: "something something darkside.... cli"
 deploy:
 docker:
 - image: account-id.dkr.ecr.us-east-1.amazonaws.com/org/repo:0.1
 aws_auth:
 aws_access_key_id: $AWS_ACCESS_KEY_ID_PRODUCTION
 aws_secret_access_key: $AWS_SECRET_ACCESS_KEY_PRODUCTION
 steps:
 - run:
 name: "Full Test Suite"
 command: "testing...."
 - run:
 name: "Deploy to Production Infrastructure"
 command: "something something darkside.... cli"

workflows:
 version: 2
 main:
 jobs:
 - build:
 filters:
 tags:
 only: /^\d{4}\.\d+$/
 - deploy:
 requires:
 - build
 filters:

AWS ECR | OPERATIONS GUIDE | 20

 branches:
 ignore: /.*/
 tags:
 only: /^\d{4}\.\d+$/

See also

• Configuration Reference

See also | OPERATIONS GUIDE | 21

https://circleci.com/docs/2.0/configuration-reference

CircleCI Server v3.x Build Artifacts

Build artifacts persist data after a job is completed. They can be used for longer-term storage of your build

process outputs. For example, when a Java build/test process finishes, the output of the process is saved as

a .jar file. CircleCI can store this file as an artifact, keeping it available long after the process has finished.

Safe and Unsafe Content Types

By default, only pre-defined artifact types are allowed. This protects users from uploading, and potentially

executing, malicious content. The 'allowed-list' is as follows:

Category Safe Type

Text Plain

Application json

Image png

Image jpg

Image gif

Image bmp

Video webm

Video ogg

Video mp4

Audio webm

Audio aac

Audio mp4

Audio mpeg

Audio ogg

Audio wav

Safe and Unsafe Content Types | OPERATIONS GUIDE | 22

Also, by default, the following types will be rendered as plain text:

Category Type

Text html

Text css

Text javascript

Text ecmascript

Application javascript

Application ecmascript

Text xml

Safe and Unsafe Content Types | OPERATIONS GUIDE | 23

CircleCI Server v3.x Usage Data

CircleCI typically collects usage data such as logs and other aggregated data for the purpose of improving

our product and services. We will never collect personally identifiable information or information that is

specific to your projects or accounts.

Current Data Collected

At this time, Server 3.0 does not include the data collection service. The service will be included in a future

release. With any release, we will communicate what additional data will be collected.

Current Data Collected | OPERATIONS GUIDE | 24

Security

This document outlines security features built into CircleCI and related integrations.

Overview

Security is our top priority at CircleCI, we are proactive and we act on security issues immediately. Report

security issues to security@circleci.com with an encrypted message using our security team’s GPG key (ID:

0x4013DDA7, fingerprint: 3CD2 A48F 2071 61C0 B9B7 1AE2 6170 15B8 4013 DDA7).

Encryption

CircleCI uses HTTPS or SSH for all networking in and out of our service including from the browser to our

services application, from the services application to your builder fleet, from our builder fleet to your source

control system, and all other points of communication. In short, none of your code or data travels to or from

CircleCI without being encrypted unless you have code in your builds that does so at your discretion.

Operators may also choose to go around our SSL configuration or not use TLS for communicating with

underlying systems.

The nature of CircleCI is that our software has access to your code and whatever data that code interacts

with. All jobs on CircleCI run in a sandbox (specifically, a Docker container or an ephemeral VM) that stands

alone from all other builds and is not accessible from the Internet or from your own network. The build

agent pulls code via git over SSH. Your particular test suite or job configurations may call out to external

services or integration points within your network, and the response from such calls will be pulled into your

jobs and used by your code at your discretion. After a job is complete, the container that ran the job is

destroyed and rebuilt. All environment variables are encrypted using Hashicorp Vault. Environment variables

are encrypted using AES256-GCM96 and are unavailable to CircleCI employees.

Sandboxing

With CircleCI you control the resources allocated to run the builds of your code. This will be done through

instances of our builder boxes that set up the containers in which your builds will run. By their nature, build

containers will pull down source code and run whatever test and deployment scripts are part of the code

base or your configuration. The containers are sandboxed, each created and destroyed for one build only (or

one slice of a parallel build), and they are not available from outside themselves. The CircleCI service

provides the ability to SSH directly to a particular build container. When doing this a user will have complete

access to any files or processes being run inside that build container, so provide access to CircleCI only to

those also trusted with your source code.

Integrations

A few different external services and technology integration points touch CircleCI. The following list

enumerates those integration points.

• Web Sockets We use Pusher client libraries for WebSocket communication between the server and the

browser, though for installs we use an internal server called slanger, so Pusher servers have no access to

your instance of CircleCI nor your source control system. This is how we, for instance, update the builds

list dynamically or show the output of a build line-by-line as it occurs. We send build status and lines of

your build output through the web socket server (which unless you have configured your installation to

Overview | OPERATIONS GUIDE | 25

mailto:security@circleci.com
https://www.vaultproject.io/
https://pusher.com/

run without SSL is done using the same certs over SSL), so it is encrypted in transit.

• Replicated We use Replicated to manage the installation wizard, licensing keys, system audit logs,

software updates, and other maintenance and systems tasks for CircleCI. Your instance of CircleCI

communicates with Replicated servers to send license key information and version information to check

for updates. Replicated does not have access to your data or other systems, and we do not send any of

your data to Replicated.

• Source Control Systems To use CircleCI you will set up a direct connection with your instance of

GitHub Enterprise or GitHub.com. When you set up CircleCI you authorize the system to check out your

private repositories. You may revoke this permission at any time through your GitHub application

settings page and by removing Circle’s Deploy Keys and Service Hooks from your repositories' Admin

pages. While CircleCI allows you to selectively build your projects, GitHub’s permissions model is "all or

nothing" — CircleCI gets permission to access all of a user’s repositories or none of them. Your instance

of CircleCI will have access to anything hosted in those git repositories and will create webhooks for a

variety of events (eg: when code is pushed, when a user is added, etc.) that will call back to CircleCI,

triggering one or more git commands that will pull down code to your build fleet.

• Dependency and Source Caches Most CircleCI customers use S3 or equivalent cloud-based storage

inside their private cloud infrastructure (Amazon VPC, etc) to store their dependency and source caches.

These storage servers are subject to the normal security parameters of anything stored on such services,

meaning in most cases our customers prevent any outside access.

• Artifacts It is common to use S3 or similar hosted storage for artifacts. Assuming these resources are

secured per your normal policies they are as safe from any outside intrusion as any other data you store

there.

• Support Bundles We use Honeycomb to process and analyze distributed tracing data from Support

Bundles that are sent to us. The traces contain metadata about activity in your instance but no secrets,

source code, or build output are included. Data is retained for a maximum of 60 days.

Audit Logs

The Audit Log feature is only available for CircleCI installed on your servers or private cloud.

CircleCI logs important events in the system for audit and forensic analysis purposes. Audit logs are separate

from system logs that track performance and network metrics.

Complete Audit logs may be downloaded from the Audit Log page within the Admin section of the

application as a CSV file. Audit log fields with nested data contain JSON blobs.

Note: In some situations, the internal machinery may generate duplicate events in the audit logs. The id field

of the downloaded logs is unique per event and can be used to identify duplicate entries.

Audit Log Events

Following are the system events that are logged. See action in the Field section below for the definition and

format.

• context.create

• context.delete

• context.env_var.delete

Audit Logs | OPERATIONS GUIDE | 26

http://www.replicated.com/
https://www.honeycomb.io/

• context.env_var.store

• project.env_var.create

• project.env_var.delete

• project.settings.update

• user.create

• user.logged_in

• user.logged_out

• workflow.job.approve

• workflow.job.finish

• workflow.job.scheduled

• workflow.job.start

Audit Log Fields

• action: The action taken that created the event. The format is ASCII lowercase words separated by dots,

with the entity acted upon first and the action taken last. In some cases entities are nested, for example,

workflow.job.start.

• actor: The actor who performed this event. In most cases this will be a CircleCI user. This data is a JSON

blob that will always contain id and and type and will likely contain name.

• target: The entity instance acted upon for this event, for example, a project, an org, an account, or a

build. This data is a JSON blob that will always contain id and and type and will likely contain name.

• payload: A JSON blob of action-specific information. The schema of the payload is expected to be

consistent for all events with the same action and version.

• occurred_at: When the event occurred in UTC expressed in ISO-8601 format with up to nine digits of

fractional precision, for example '2017-12-21T13:50:54.474Z'.

• metadata: A set of key/value pairs that can be attached to any event. All keys and values are strings.

This can be used to add additional information to certain types of events.

• id: A UUID that uniquely identifies this event. This is intended to allow consumers of events to identify

duplicate deliveries.

• version: Version of the event schema. Currently the value will always be 1. Later versions may have

different values to accommodate schema changes.

• scope: If the target is owned by an Account in the CircleCI domain model, the account field should be

filled in with the Account name and ID. This data is a JSON blob that will always contain id and type and

will likely contain name.

• success: A flag to indicate if the action was successful.

• request: If this event was triggered by an external request this data will be populated and may be used

to connect events that originate from the same external request. The format is a JSON blob containing

id (the unique ID assigned to this request by CircleCI).

Audit Logs | OPERATIONS GUIDE | 27

Checklist To Using CircleCI Securely as a Customer

If you are getting started with CircleCI there are some things you can ask your team to consider for security

best practices as users of CircleCI:

• Minimise the number of secrets (private keys / environment variables) your build needs and rotate

secrets regularly.

• It is important to rotate secrets regularly in your organization, especially as team members come and go.

• Rotating secrets regularly means your secrets are only active for a certain amount of time, helping to

reduce possible risks if keys are compromised.

• Ensure the secrets you do use are of limited scope - with only enough permissions for the purposes of

your build. Consider carefully adjudicating the role and permission systems of other platforms you use

outside of CircleCI; for example, when using something such as IAM permissions on AWS, or Github’s

Machine User feature.

• Sometimes user misuse of certain tools might accidentally print secrets to stdout which will land in your

logs. Please be aware of:

• running env or printenv which will print all your environment variables to stdout.

• literally printing secrets in your codebase or in your shell with echo.

• programs or debugging tools that print secrets on error.

• Consult your VCS provider’s permissions for your organization (if you are in an organizations) and try to

follow the Principle of Least Privilege.

• Use Restricted Contexts with teams to share environment variables with a select security group. Read

through the contexts document to learn more.

• Ensure you audit who has access to SSH keys in your organization.

• Ensure that your team is using Two-Factor Authentication (2FA) with your VCS (Github 2FA, Bitbucket).

If a user’s GitHub or Bitbucket account is compromised a nefarious actor could push code or potentially

steal secrets.

• If your project is open source and public, please make note of whether or not you want to share your

environment variables. On CircleCI, you can change a project’s settings to control whether your

environment variables can pass on to forked versions of your repo. This is not enabled by default. You can

read more about these settings and open source security in our Open Source Projects document.

Checklist To Using CircleCI Securely as a Customer | OPERATIONS GUIDE | 28

https://developer.github.com/v3/guides/managing-deploy-keys/#machine-users
https://en.wikipedia.org/wiki/Principle_of_least_privilege
contexts.pdf#restricting-a-context
https://help.github.com/en/articles/securing-your-account-with-two-factor-authentication-2fa
https://confluence.atlassian.com/bitbucket/two-step-verification-777023203.html
oss.pdf#security

CircleCI Server v3.x Application Lifecycle

CircleCI is committed to supporting four minor versions of the software. This means a minor version will

receive patches for up to 12 months. In order to help identify releases and their impact to your installation,

we use semantic versioning.

Semantic Versioning

Given a version number, MAJOR.MINOR.PATCH increment, the:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards compatible manner, and

3. PATCH version when you make backwards compatible bug fixes.

Additional labels for pre-release and build metadata are available as extensions to the

MAJOR.MINOR.PATCH format.

Release Schedule

We release monthly patch fixes for bugs and security concerns. We will have quarterly new feature releases.

All releases will be posted to the change log. To stay up to date with the most recent releases, please

subscribe to the change log.

Semantic Versioning | OPERATIONS GUIDE | 29

https://circleci.com/server/changelog/

CircleCI Server v3.x Troubleshooting and Support

This document describes an initial set of troubleshooting steps to take if you are having problems with your

CircleCI Server v3.x installation. If your issue is not addressed below, you can generate a support bundle or

contact your CircleCI account team.

Start Admin Console

To restart the Admin Console, run:

kubectl kots admin-console --namespace <namespace>

Open your browser and access http://localhost:8800 to see the Admin console.

Generate Support Bundle

A support bundle is used by CircleCI engineers to diagnose and fix any issues you are experiencing. They are

typically requested when you open a ticket.

To download a support bundle to provide to CircleCI for support, select the Troubleshoot tab from the

Admin console menu bar, and then click Analyze CircleCI Server.

Managing Pods

Verify Pod Readiness and Status

Note: please check the READY column as well as STATUS. Even if the STATUS is Running, pods are not ready to

serve user requests. Some pods may take some time to become ready.

kubectl get pods -n <namespace>
NAME READY STATUS RESTARTS AGE
api-service-5c8f557548-zjbsj 1/1 Running 0 6d20h
audit-log-service-77c478f9d5-5dfzv 1/1 Running 0 6d20h
builds-service-v1-5f8568c7f5-62h8n 1/1 Running 0 6d20h
circleci-mongodb-0 1/1 Running 0 6d20h
circleci-nomad-0 1/1 Running 6 6d20h
…

To show only pods with a status besides Running, you can use --field-selector option.

kubectl get pods --field-selector status.phase!=Running -n <namespace>
NAME READY STATUS RESTARTS AGE
nomad-server 0/1 Error 0 5d22h

Start Admin Console | OPERATIONS GUIDE | 30

http://localhost:8800

Verify Pod Settings and Status

To show detail settings and status of pods:

kubectl describe pods <pod-name> -n <namespace>

Get Pod Logs

To show logs of pods:

kubectl logs <pod-name> -n <namespace>

Restart Pods

To restart specific pods, the easiest way is remove the pod. Kubernetes will automatically recreate the pod.

kubectl delete pod <pod-name> -n <name-space> --now

Debug Queuing Builds

For troubleshooting information on debugging queued builds, see the Server 2.x troubleshooting Guide.

Debug Queuing Builds | OPERATIONS GUIDE | 31

https://circleci.com/docs/2.0/troubleshooting/?section=server-administration#debug-queuing-builds

CircleCI Server v3.x Backup and Restore

Overview

Backup and restore is available for server v3.1.0 and up.

While operating and administering CircleCI server, you will undoubtedly ponder how to maintain backups

and recover your installation, should there be a need to migrate it to another cluster or recover from a

critical event. This document outlines recommendations for how to back up and restore your CircleCI server

instance data and state.

CircleCI server is administered via Kots, which uses Velero for backup and restore. The benefit of this

approach is that it not only restores your application’s data, but it also restores the state of the Kubernetes

cluster and its resources at the time of the backup. In this way, we can also restore admin-console

configurations and customizations you made to your cluster.


Backup and restore of the CircleCI services is dependent on Velero. If your cluster is lost,

you will not be able to restore CircleCI until you have successfully brought up Velero in

the cluster. From there you can recover the CircleCI services.

The setup

Backups of CircleCI server can be created quite easily through Kots. Howeber, to enable backup support

you will need to install and configure Velero on your cluster. The following sections outline the steps

needed to install Velero on your cluster.

Prerequisites

• Download and install the Velero CLI for your environment.

AWS Prerequisites

• AWS CLI is installed.

GCP Prerequisites

• gcloud and gsutil are installed. You can set them up by installing Google Cloud SDK, which includes

both, by referring to the documentation.

For more information, see Velero’s supported providers documentation.

Below, you will find instructions for creating a server 3.x backup on AWS and GCP.

S3 Compatible Storage Prerequisites

• minio CLI is installed and configured for your storage provider.

Server 3.x backups on AWS

The following steps will assume AWS as your provider and you have met the prerequisites listed above.

Overview | OPERATIONS GUIDE | 32

https://kots.io/
https://velero.io/
https://kots.io/
https://velero.io/
https://velero.io/docs/v1.6/basic-install/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://cloud.google.com/sdk/docs/
https://velero.io/docs/v1.6/supported-providers/
https://docs.min.io/docs/minio-client-quickstart-guide.html

These instructions were sourced from the Velero documentation here.

Step 1 - Create an AWS S3 bucket

BUCKET=<YOUR_BUCKET>
REGION=<YOUR_REGION>
aws s3api create-bucket \
 --bucket $BUCKET \
 --region $REGION \
 --create-bucket-configuration LocationConstraint=$REGION


us-east-1 does not support a LocationConstraint. If your region is us-east-1, omit the

bucket configuration.

Step 2 - Setup permissions for Velero

• Create an IAM user

aws iam create-user --user-name velero

• Attach policies to give user velero the necessary permissions:

cat > velero-policy.json <<EOF
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeVolumes",
 "ec2:DescribeSnapshots",
 "ec2:CreateTags",
 "ec2:CreateVolume",
 "ec2:CreateSnapshot",
 "ec2:DeleteSnapshot"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [

Server 3.x backups on AWS | OPERATIONS GUIDE | 33

https://github.com/vmware-tanzu/velero-plugin-for-aws#setup
https://docs.aws.amazon.com/AmazonS3/latest/API/API_CreateBucket.html#API_CreateBucket_RequestBody

 "s3:GetObject",
 "s3:DeleteObject",
 "s3:PutObject",
 "s3:AbortMultipartUpload",
 "s3:ListMultipartUploadParts"
],
 "Resource": [
 "arn:aws:s3:::${ BUCKET} /*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::${ BUCKET} "
]
 }
]
}
EOF

aws iam put-user-policy \
 --user-name velero \
 --policy-name velero \
 --policy-document file://velero-policy.json

• Create an access key for user velero

aws iam create-access-key --user-name velero

The result should look like this:

Server 3.x backups on AWS | OPERATIONS GUIDE | 34

{
 "AccessKey": {
 "UserName": "velero",
 "Status": "Active",
 "CreateDate": "2017-07-31T22:24:41.576Z",
 "SecretAccessKey": <AWS_SECRET_ACCESS_KEY>,
 "AccessKeyId": <AWS_ACCESS_KEY_ID>
 }
}

• Create a Velero-specific credentials file (eg: ./credentials-velero) in your local directory, with the

following contents:

[default]
aws_access_key_id=<AWS_ACCESS_KEY_ID>
aws_secret_access_key=<AWS_SECRET_ACCESS_KEY>

where the AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY placeholders are values returned from the create-

access-key request in the previous step.

Step 3 - Install and start Velero

• Run the following velero install command. This will create a namespace called velero and install all the

necessary resources to run Velero. Make sure that you pass the correct file name containing the AWS

credentials that you have created in Step 2.


kots backups require restic to operate. When installing Velero, ensure that you have the

--use-restic flag set, as shown below:

velero install \
 --provider aws \
 --plugins velero/velero-plugin-for-aws:v1.2.0 \
 --bucket $BUCKET \
 --backup-location-config region=$REGION \
 --snapshot-location-config region=$REGION \
 --secret-file ./credentials-velero \
 --use-restic \
 --wait

• Once Velero is installed on your cluster, check the new velero namespace. You should have a Velero

deployment and a restic daemonset, e.g.:

Server 3.x backups on AWS | OPERATIONS GUIDE | 35

https://restic.net/

$ kubectl get pods --namespace velero
NAME READY STATUS RESTARTS AGE
restic-5vlww 1/1 Running 0 2m
restic-94ptv 1/1 Running 0 2m
restic-ch6m9 1/1 Running 0 2m
restic-mknws 1/1 Running 0 2m
velero-68788b675c-dm2s7 1/1 Running 0 2m

As restic is a daemonset, there should be one pod for each node in your Kubernetes cluster.

Server 3.x backups on GCP

The following steps are specific for Google Cloud Platform and it is assumed you have met the prerequisites.

These instructions were sourced from the documentation for the Velero GCP plugin here.

Step 1 - Create a GCP bucket

To reduce the chance of typos, we will set some of the parameters as shell variables. Should you be unable

to complete all the steps in the same session, do not forget to reset variables as necessary before

proceeding. In the step below, for example, we will define a variable for your bucket name. Replace the

<YOUR_BUCKET> placeholder with the name of the bucket you want to create for your backups.

BUCKET=<YOUR_BUCKET>

gsutil mb gs://$BUCKET/

Step 2 - Setup permissions for Velero

If your server installation runs within a GKE cluster, ensure that your current IAM user is a cluster admin for

this cluster, as RBAC objects need to be created. More information can be found in the GKE documentation.

1. First, we will set a shell variable for your project ID. To do so, first make sure that your gcloud CLI points

to the correct project by looking at the current configuration:

gcloud config list

2. If the project is correct, set the variable:

PROJECT_ID=$(gcloud config get-value project)

3. Create a service account:

Server 3.x backups on GCP | OPERATIONS GUIDE | 36

https://github.com/vmware-tanzu/velero-plugin-for-gcp#setup
https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-control#iam-rolebinding-bootstrap

gcloud iam service-accounts create velero \
 --display-name "Velero service account"


If you run several clusters with Velero, you might want to consider using a more

specific name for the Service Account besides velero, as suggested here.

4. You can check if the service account has been created successfully by running:

gcloud iam service-accounts list

5. Next, store the email address for the Service Account in a variable:

SERVICE_ACCOUNT_EMAIL=$(gcloud iam service-accounts list \
 --filter ="displayName:Velero service account" \
 --format 'value(email)')

Modify the command as needed to match the display name you have chosen for your Service Account.

6. Grant the necessary permissions to the Service Account:

ROLE_PERMISSIONS=(
 compute.disks.get
 compute.disks.create
 compute.disks.createSnapshot
 compute.snapshots.get
 compute.snapshots.create
 compute.snapshots.useReadOnly
 compute.snapshots.delete
 compute.zones.get
)

gcloud iam roles create velero.server \
 --project $PROJECT_ID \
 --title "Velero Server" \
 --permissions "$(IFS=","; echo "${ ROLE_PERMISSIONS[*]} ")"

gcloud projects add-iam-policy-binding $PROJECT_ID \
 --member serviceAccount:$SERVICE_ACCOUNT_EMAIL \
 --role projects/$PROJECT_ID/roles/velero.server

gsutil iam ch serviceAccount:$SERVICE_ACCOUNT_EMAIL:objectAdmin gs://${ BUCKET}

Server 3.x backups on GCP | OPERATIONS GUIDE | 37

Now, you need to ensure that Velero can use this Service Account.

Option 1: JSON key file

You can simply pass a JSON credentials file to Velero to authorize it to perform actions as the Service

Account. To do this, we first need to create a key:

gcloud iam service-accounts keys create credentials-velero \
 --iam-account $SERVICE_ACCOUNT_EMAIL

After running this, you should have a file named credentials-velero in your local working directory.

Option 2: Workload Identities

If you are already using Workload Identities in your cluster, you can bind the GCP Service Account you just

created to Velero’s Kubernetes service account. In this case, the GCP Service Account will need the

iam.serviceAccounts.signBlob role in addition to the permissions already specified above.

Step 3 - Install and start Velero

• Run one of the following velero install commands, depending on how you authorized the service

account. This will create a namespace called velero and install all the necessary resources to run Velero.


kots backups require restic to operate. When installing Velero, ensure that you have the

--use-restic flag set.

If using a JSON key file

velero install \
 --provider gcp \
 --plugins velero/velero-plugin-for-gcp:v1.2.0 \
 --bucket $BUCKET \
 --secret-file ./credentials-velero \
 --use-restic \
 --wait

If using Workload Identities

Server 3.x backups on GCP | OPERATIONS GUIDE | 38

https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity
https://restic.net/

velero install \
 --provider gcp \
 --plugins velero/velero-plugin-for-gcp:v1.2.0 \
 --bucket $BUCKET \
 --no-secret \
 --sa-annotations iam.gke.io/gcp-service-account=$SERVICE_ACCOUNT_EMAIL \
 --backup-location-config serviceAccount=$SERVICE_ACCOUNT_EMAIL \
 --use-restic \
 --wait

For more options on customizing your installation, refer to the Velero documentation.

• Once Velero is installed on your cluster, check the new velero namespace. You should have a Velero

deployment and a restic daemonset. eg:

$ kubectl get pods --namespace velero
NAME READY STATUS RESTARTS AGE
restic-5vlww 1/1 Running 0 2m
restic-94ptv 1/1 Running 0 2m
restic-ch6m9 1/1 Running 0 2m
restic-mknws 1/1 Running 0 2m
velero-68788b675c-dm2s7 1/1 Running 0 2m

As restic is a daemonset, there should be one pod for each node in your Kubernetes cluster.

Server 3.x backups with S3 Compatible Storage

The following steps will assume you’re using S3 compatible object storage, but not necessarily AWS S3, for

your backups. It is also assumed you have met the prerequisites.

These instructions were sourced from the Velero documentation here.

Step 1 - Configure mc client

To start, configure mc to connect to your storage provider:

Alias can be any name as long as you use the same value in subsequent commands

export ALIAS=my-provider

mc alias set $ALIAS <YOUR_MINIO_ENDPOINT> <YOUR_MINIO_ACCESS_KEY_ID> <YOUR_MINIO_SECRET_ACCESS_KEY>

You can verify your client is correctly configured by running mc ls my-provider and you should see the

buckets in your provider enumerated in the output.

Server 3.x backups with S3 Compatible Storage | OPERATIONS GUIDE | 39

https://github.com/vmware-tanzu/velero-plugin-for-gcp#install-and-start-velero
https://velero.io/docs/v1.6/contributions/minio/
https://docs.min.io/minio/baremetal/reference/minio-cli/minio-mc.html

Step 2 - Create a bucket

Create a bucket for your backups. It is important that a new bucket is used, as Velero cannot use a

preexisting bucket with other content.

mc mb ${ ALIAS} /<YOUR_BUCKET>

Set 3 - Create a user and policy

Next, create a user and policy for Velero to access your bucket.


In the following snippet <YOUR_MINIO_ACCESS_KEY_ID> and

<YOUR_MINIO_SECRET_ACCESS_KEY> refer to the credentials used by Velero to access MinIO.

Create user
mc admin user add $ALIAS <YOUR_MINIO_ACCESS_KEY_ID> <YOUR_MINIO_SECRET_ACCESS_KEY>

Create policy
cat > velero-policy.json << EOF
{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:*"
],
 "Resource": [
 "arn:aws:s3:::<YOUR_BUCKET>",
 "arn:aws:s3:::<YOUR_BUCKET>/*"
]
 }
]
}
EOF

mc admin policy add $ALIAS velero-policy velero-policy.json

Bind user to policy
mc admin policy set $ALIAS velero-policy user=<YOUR_VELERO_ACCESS_KEY_ID>

Finally, we add our new user’s credentials to a file (./credentials-velero in this example) with the following

contents:

Server 3.x backups with S3 Compatible Storage | OPERATIONS GUIDE | 40

[default]
aws_access_key_id =<YOUR_VELERO_ACCESS_KEY_ID>
aws_secret_access_key =<YOUR_VELERO_SECRET_ACCESS_KEY>

Step 4 - Install and start Velero

Run the following velero install command. This will create a namespace called velero and install all the

necessary resources to run Velero.


kots backups require restic to operate. When installing Velero, ensure that you have the

--use-restic flag set, as shown below:

velero install --provider aws \
 --plugins velero/velero-plugin-for-aws:v1.2.0 \
 --bucket <YOUR_BUCKET> \
 --secret-file ./credentials-velero \
 --use-volume-snapshots =false \
 --use-restic \
 --backup-location-config region=minio,s3ForcePathStyle="true",s3Url=<YOUR_ENDPOINT> \
 --wait

Once Velero is installed on your cluster, check the new velero namespace. You should have a Velero

deployment and a restic daemonset, e.g.:

$ kubectl get pods --namespace velero
NAME READY STATUS RESTARTS AGE
restic-5vlww 1/1 Running 0 2m
restic-94ptv 1/1 Running 0 2m
restic-ch6m9 1/1 Running 0 2m
restic-mknws 1/1 Running 0 2m
velero-68788b675c-dm2s7 1/1 Running 0 2m

As restic is a daemonset, there should be one pod for each node in your Kubernetes cluster.

Creating backups

Now that Velero is installed on your cluster, you should see the snapshots option in the navbar of the

management console.

Creating backups | OPERATIONS GUIDE | 41

https://restic.net/

If you see this option, you are ready to create your first backup. If you do not see this option, please refer to

the troubleshooting section.

Option 1 - Create a backup with kots CLI

To create the backup, run:

kubectl kots backup --namespace <your namespace>

Option 2 - Create a backup with kots admin console

Select Snapshots from the navbar. The default selection should be Full Snapshots, which is recommended.

Select the Start a snapshot button.

Creating backups | OPERATIONS GUIDE | 42

Restoring backups

Option 1 - Restore a backup from a snapshot

To restore from a backup stored in your S3 compatible storage, you will need to ensure Velero is installed

on your Kubernetes cluster and that Velero has access to the storage bucket containing the backups. When

using EKS, restoring CircleCI server requires that an instance of CircleCI server is installed before-hand.

When using GKE or other platforms, a cluster with just velero installed may work.


If this is a new cluster or if you need to re-install Velero, the installation should be done

with the same credentials generated above.

Option 2 - Restore a backup using the kots CLI

To restore a backup using the kots CLI, run the following to get a list of backups:

kubectl kots get backups

Using a backup name from the previous command, run the following to start the restore process:

kubectl kots restore --from-backup <backup-instance-id>

Option 3 - Restore a backup using the kots administration console UI

As with backups, navigate to Snapshots in kots admin. Now you should see a list of all your backups, each

with a restore icon. Choose the backup you wish to use and select restore.



The restore will create new load balancers for CircleCI’s services. You will need to either

update your DNS records or the hostname configurations in kots admin-console as a

result. You may also need to consider updating the nomad server endpoint provided to

your nomad clients.

Restoring backups | OPERATIONS GUIDE | 43


If you are using pre-existing nomad clients, you will need to restart them before they will

connect to the nomad-server cluster.

It should take roughly 10-15 mins for CircleCI server to be restored and operational.

Optional - Scheduling backups with kots

To schedule regular backups, select Snapshots, and then Settings & Schedule from the kots administration

console.

And here, you can find configurations related to your snapshots, including scheduling.

Troubleshooting Backups and Restoration

Snapshots are not available in kots admin console

If your kots admin console does not display the snapshot option, you may try the following:

• Confirm that your version of kots supports snapshots. At this time, we recommend v1.40.0 or above:

Optional - Scheduling backups with kots | OPERATIONS GUIDE | 44

$ kubectl kots version
Replicated KOTS 1.40.0

• Check that Velero is deployed and running correctly. You may check the Velero logs with the command

below.

$ kubectl logs deployment/velero --namespace velero

You may need to reinstall Velero as a result.

• Confirm that snapshots are available on your license. You may reach out to our Customer Support Team

to validate this.

Errors occur during backup or restore process

If you experience an error during backup or restore processes, the first place to look would be the Velero

logs. Using the command above, you may find 4XX errors, which would likely be caused by issues with your

storage bucket access.

• Confirm that your bucket exists and is in the region you expect.

• Then confirm that the credentials provided to Velero can be used to access the bucket.

• You may need to run the command to install Velero again, this time with updated bucket info.

You may also check the status of pods in the velero namespace.

$ kubectl get pods --namespace velero
NAME READY STATUS RESTARTS AGE
restic-5vlww 1/1 Pending 0 10m
restic-94ptv 1/1 Running 0 10m
restic-ch6m9 1/1 Pending 0 10m
restic-mknws 1/1 Running 0 10m
velero-68788b675c-dm2s7 1/1 Running 0 10m

In the above example, some restic pods are pending, which means they are waiting for a node to have

available CPU or memory resources. You may need to scale your nodes to accommodate restic in this case.

Troubleshooting Backups and Restoration | OPERATIONS GUIDE | 45

	OPERATIONS GUIDE: A guide for administrators of CircleCI Server v3.1.0 on AWS or GCP
	CircleCI Server v3.x Operations Overview
	Build Environment

	CircleCI Server v3.x Metrics and Monitoring
	Metrics Collection

	CircleCI Server v3.x User Accounts
	Suspending Accounts
	Reactivating Accounts
	Limiting Registration by GitHub Organization

	CircleCI Server v3.x Orbs
	Managing Orbs
	List available orbs
	Import a public orb
	Fetch a public orb’s updates

	CircleCI Server v3.x VM Service
	AWS EC2
	Google Cloud Platform
	Configuring VM Service

	CircleCI Server v3.x Configuring External Services
	External Database and Vault Setup for CircleCI Installations
	PostgreSQL

	CircleCI Server v3.x Load Balancers
	Make the frontend load balancer private

	CircleCI Server v3.x Authentication
	Using Docker Authenticated Pulls
	Docker executor
	Machine executor (with Docker orb)
	Machine executor (with Docker CLI)
	AWS ECR
	See also

	CircleCI Server v3.x Build Artifacts
	Safe and Unsafe Content Types

	CircleCI Server v3.x Usage Data
	Current Data Collected

	Security
	Overview
	Encryption
	Sandboxing
	Integrations
	Audit Logs
	Checklist To Using CircleCI Securely as a Customer

	CircleCI Server v3.x Application Lifecycle
	Semantic Versioning
	Release Schedule

	CircleCI Server v3.x Troubleshooting and Support
	Start Admin Console
	Generate Support Bundle
	Managing Pods
	Debug Queuing Builds

	CircleCI Server v3.x Backup and Restore
	Overview
	The setup
	Server 3.x backups on AWS
	Server 3.x backups on GCP
	Server 3.x backups with S3 Compatible Storage
	Creating backups
	Restoring backups
	Optional - Scheduling backups with kots
	Troubleshooting Backups and Restoration

